Jobsite handling and storage, erection procedure and erection bracing are the responsibility of the installer. Careful review of this installation guide, project plans and joist layout drawings (where supplied) should be undertaken prior to the installation of the joists. The manufacturer’s warranty applies only to properly installed undamaged joists, adequately protected from the weather in the completed project.

1. Brace each joist as it is erected. Joists must be nailed to supports and all hangers, blocking, rim joists. X-bridging at supports must be completely installed and properly nailed. (see general notes - page 5)

2. Brace the ends of cantilevers (overhangs) with closure panels, rim joist or X-bridging (see general notes - page 5)

3. Lateral brace the top flange of each joist, to prevent side-ways buckling or rollover which may occur under light construction loads, such as a worker and/or a layer of un-nailed sheathing. Fully installed permanent sheathing or temporary struts to the top flange of each joist (see ‘typical SmartJoist floor framing - page 6) can accomplish lateral bracing.

4. Temporary struts must be nailed to a lateral restraint at the end of bay such as a braced wall or temporary (or permanent) sheathing nailed to the first 1200 mm of the joist at the end of the bay (see typical floor framing - page 6)

5. Permanent sheathing must be completely installed and properly nailed before additional loads can be placed on the system.

6. The integrity and safe use of these products can be seriously impaired if they are damaged. Do not install any damaged products. Contact your Tilling representative or the Tech Support Customer Helpline on 1300 668 690 if any product damage is noted.

DO NOT ALLOW WORKERS OR LOADS ON SMARTJOISTS UNTIL ALL BLOCKING, HANGERS, RIM JOISTS, NAILING AND TEMPORARY BRACING ARE INSTALLED AS SPECIFIED.

ACCIDENTS CAN BE AVOIDED UNDER NORMAL CONDITIONS BY FOLLOWING THESE GUIDELINES:

Handling and storage of SmartJoists

SmartJoists should be stacked in the upright position to avoid any damage during handling or storage.

Bears at a maximum of 4.0 metre centres

Use bearers to keep stacked material away from damp surfaces. align bearers vertically
Durability and exposure to moisture
- Untreated SmartFrame EWP

SmartLVL and SmartJoists are manufactured from softwoods and hardwoods having a durability rating of class 4, which is the same rating as some Ash type Eucalypts. Untreated SmartJoists and SmartLVL should not be used where the equilibrium moisture content is likely to remain above 20% for an extended period.

Untreated SmartLVL is suitable in the *internal, fully protected, ventilated* and the *external above ground, protected* zones of the structure as shown on the next page. Untreated SmartLVL is not suitable for *external above ground, exposed* or humid indoor conditions, such as swimming pool enclosures.

Definitions of exposure zones within a structure

* External timbers are regarded as protected in AS 1684 if they are covered by a roof projection (or similar) at 30° to the vertical and they are well detailed and maintained (painted and kept well ventilated).

H3 Deck bearers and joists

H3 Treated Deck joists and bearers are a common application for treated SmartLVL 15. The diagram demonstrates the minimum construction detailing for H3 treated joists and bearers. Failure to follow these guidelines may render treatment warranties void.

* Painting as per “Painting of SmartGuard LOSP Treated SmartLVL 15” in the SmartLVL 15 Design Guide

Recommended proprietary top protection for joists and bearers

* It is a requirement that any cuts, notches or penetrations made in LOSP treated LVL be painted with a suitable “brush/spray on” preservative such as “Enseal”. (Enseal is available as part of any SmartFrame H3 LOSP order)
Safe loading of materials on a SmartJoist working platform

IMPORTANT!! Joists must be fully braced or have floor sheeting installed before applying any of the following loads.

<table>
<thead>
<tr>
<th>SmartJoist Code</th>
<th>Joist Spacing up to 600 mm Max weight (kg) per joist</th>
<th>SmartJoist Code</th>
<th>Joist Spacing up to 600 mm Max weight (kg) per joist</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ20044</td>
<td>180</td>
<td>SJ30051</td>
<td>295</td>
</tr>
<tr>
<td>SJ24040</td>
<td>210</td>
<td>SJ30070</td>
<td>345</td>
</tr>
<tr>
<td>SJ24051</td>
<td>235</td>
<td>SJ30090</td>
<td>390</td>
</tr>
<tr>
<td>SJ24070</td>
<td>270</td>
<td>SP30095</td>
<td>415</td>
</tr>
<tr>
<td>SJ24090</td>
<td>300</td>
<td>SJ36058</td>
<td>395</td>
</tr>
<tr>
<td>SJ25570</td>
<td>290</td>
<td>SJ36090</td>
<td>475</td>
</tr>
<tr>
<td>SJ30040</td>
<td>265</td>
<td>SJ40090</td>
<td>535</td>
</tr>
</tbody>
</table>

Notes:
1. Ensure studs are structurally adequate to support temporary loads
2. NO loads are to be stacked over any part of the lengths of the joists fixed to an opening header or trimmer joist such as a stair trimmer
3. All timber must be kept dry when applying maximum temporary loading
4. Loads are to be spread equally over a minimum of 2 joists, using timber bearers at a minimum of 1200 mm in length or a standard 1200 x 1200 pallet
5. If no plasterboard is in place under the joists, the bottom flange requires temporary bracing
6. Joists on hangers may require propping
7. At joist supports, blocking or rim board is to be nailed to the wall plate and joists
8. Bracing lines to be 90 x 35 MGP10 or similar
9. Perpendicular bracing to run full width of floor. Long lengths (2400 mm min.) are recommended with the ends overlapped at a common joist
10. The long dimension of the load shall be placed perpendicular to the framing and not parallel to Smart Joists
11. If unsure about stacking concentrated loads on SmartJoist working platforms, please contact the tech support helpline on 1300 668 690
End blocking and SmartJoist

The end blocking of I-Joists performs three (3) essential functions, as well as being an invaluable component of the bracing of the structure as a whole unit. These functions include:

(1) Keeps joists upright and prevents rollover during construction
(2) Provides end reaction capacity to the I-Joists and
(3) Provides extra torsional resistance to the I-Joist to improve floor performance.

(A full description of the end blocking effects is contained in the SmartJoist Design Guide).

Two (2) end blocking options are provided on the following pages.
1. Simplified solution

The simplified solution for the end blocking of SmartJoists is to use SmartJoist blocking or SmartRim rimboard at the end of ALL joists that bear onto external loadbearing walls as per details F1-F3 and nailed as per “General Details” on page 7 of this Design Guide.

This method provides:
1. Transfer of vertical gravity loads through the floor plane (Except under heavily loaded columns and jamb studs see detail F30 A-C)

2. Provides adequate resistance to racking loads from wind
3. Prevents unsightly deflections of the edge of floor sheeting at the wall interface

Experience shows that a floor plane properly engineered to provide sufficient racking resistance and support for gravity loads, whether concentrated or uniformly distributed, requires a significant amount of blocking/rimboard, so to simply block the ends of all joists on exterior loadbearing walls is the simplest solution.

Fully blocked exterior walls

Wall plates in the frame are required to transfer vertical loads into the support structure below. These wall plates may be supported at 450 or 600 mm cts, thus acting as a beam between supports, bending about its weaker axis. When concentrated loads act at the centre of this wall plate, the bending and deflection effects can be quite significant.

The full blocking of external and load bearing walls, as shown in details F1-F4, can act as a beam transferring these loads to the support structure below, thus reducing the beam effect of the wall plates.

Unless there is a requirement for double wall plates for a reason OTHER than the beam effect between supports, walls blocked as per detail F1-F4 and general notes #2, #3, and #4 provide sufficient beam action to allow single wall plates.
2. Engineered Solution

A fully Engineered Solution MAY reduce the amount of end blocking of joists at an exterior wall, but requires engineering calculations and judgement to determine the correct number and type of blocking pieces to achieve the requires resistance.

To use this method, designers will need to meet the following criteria via the use of Table 1 on the next page, AND carry out racking/sliding resistance calculations as well.

This method does NOT necessarily provide a solution to:

1. The link between fully blocked walls and the use of single wall plates. Unless fully blocked, the designer will need to consider the location of upper studs/in relation to lower studs/columns when considering to use one or multiple wall plates
2. The long term deflection of floor sheeting at walls (gap under the skirting board) when heavy furniture is placed against the wall.

The Engineered Solution involves a detailed analysis of the following:

- The compression loads at both the ends of a SmartJoist at its support location, and in the case of a continuous span, the compression loads at the internal support
- These loads vary considerably depending upon whether it involves:
 - a. Floor loads only
 - b. Floor loads plus compression loads from load bearing walls
 - c. Floor loads, compression loads from load bearing walls and/or concentrated compression loads form jamb studs/posts
- Use of the table on the next page to calculate:
 - a. Minimum end and interior bearing lengths for the SmartJoists
 - b. Associated SmartJoist blocking requirements to meet the design loads
 - c. Requirement, where necessary, to add compression blocks.
SmartJoist blocking options

<table>
<thead>
<tr>
<th>Loads at supports</th>
<th>End supports</th>
<th>Intermediate supports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Joist spacing (mm)</td>
<td>Joist spacing (mm)</td>
</tr>
<tr>
<td>≤ 450 mm</td>
<td>600 mm</td>
<td>≥ 450 mm</td>
</tr>
<tr>
<td>≥ 450 mm</td>
<td>600 mm</td>
<td>≥ 65 mm</td>
</tr>
</tbody>
</table>

Table 1 – Minimum bearing and blocking at supports for Gravity Loads ONLY

1. **Floor loads ONLY**
 - Minimum bearing length (mm)
 - Sheet Roof (up to 40 kg/m²)
 - ≥ 45 mm
 - ≥ 65 mm
 - Tile roof (up to 90 kg/m²)
 - ≥ 65 mm
 - ≥ 90 mm
 - Install intermittent blocking or equivalent

2. **Floor loads plus compression load from a single storey load bearing wall supporting roof only**
 - Minimum bearing length (mm)
 - ≥ 45 mm
 - ≥ 65 mm
 - Install continuous SmartJoist blocking

3. **Floor loads plus compression load from a two storey load bearing wall supporting roof and upper floor**
 - Minimum bearing length (mm)
 - ≥ 65 mm
 - ≥ 65 mm
 - ≥ 65 mm
 - ≥ 65 mm
 - Install continuous SmartJoist blocking or two (2) layers of Rimboard
 - Install continuous SmartJoist blocking

4. **Concentrated loads from jamb studs or posts**
 - In addition to the above, install compression blocks as per Detail F8

* Or provide bearing as for joists supporting floor loads only, and install continuous SmartJoist blocking, Rimboard or Boundary joist to support roof and wall loads

NOTE:

The Engineered Solution described in this table above considers vertical gravity loads only, and does **NOT** involve a calculation to determine whether the number and type of blocking selected to satisfy the vertical gravity load resistance will necessarily provide sufficient resistance to the lateral loads described as acting on the joists as shown opposite.

Section 8 of AS 1684.2—2010 (a simplified version in AS 1684.4—2010) is used to calculate the lateral wind forces to be transmitted through the floor.

Suitable details must be prepared by an engineer experienced in timber design and detailing that will effectively transfer the lateral loads through the floor system to the nominated ground floor bracing walls.

Full blocking using SmartJoist or SmartRim with the required fixing is a practical and easily installed option.

Mid span blocking

SmartJoists designed and constructed as per this Design Guide and installed with a direct fix ceiling do not require mid-span blocking.

Experience has shown that in rare cases there are some scenarios where properly installed joist bridging elements may be beneficial:

1. **Subfloors where there is no lining to the underside of the joists**
2. Suspended ceiling plaster systems that provide limited lateral support to the lower flange of the SmartJoists
3. Floor systems involving metal fixed plaster systems where normal live load deflections may cause metal to metal noise

For further information on this topic or details of recommended SmartJoist bridging elements, contact the tech support helpline on 1300 668 690
Typical SmartJoist Floor Framing

Typical SmartJoist Floor construction details

F1
- SmartJoist blocking panel
- Non-load bearing cantilevers
- Brick ledge cantilevers
- SmartJoist to steel connections

F2
- SmartJoist rim joist
- Multiple SmartJoists
- Butt sections together at centre of lower storey stud.

F3
- 19mm thick SmartRim rimboard
- Fix bottom plate with 90x/3.15mm nails @ 150 cm into flooring
- Fix rimboard with 1/3.15 mm dia. x 65 mm nail into top & bottom flanges

F4
- Load-bearing wall
- Small section of bearing on plate or chamfer plates to support posts cap joist bearing wall.

F5
- Concentrated Roof loads
- Solid block all posts from above to bearing below.

NOTE:
Top plate width must be greater than width of flange rim joist + 30 mm (min bearing length)

F3
- Single/Upper storey
- Lower storey of two storey

F4
- Small section of bearing on plate or chamfer plates to support posts cap joist bearing wall.

F5
- Concentrated Roof loads

Note:
To achieve the necessary racking resistance through the floor diaphragm, it is important that the nailing provisions of the floor sheathing to the joists as described in AS 1684 (AS 1869 for particle board) be adopted to nail the floor sheeting to the Rim Joist or SmartRim in details F1-F3.
Typical SmartJoist floor construction details (cont’d)

WARNING - Correct blocking for SmartJoists

Green timber shall not be used under any circumstance

All blocking shall be carried out as per details F1-F3, with blocking to extend to both flanges and skew nailed with 3.15 Φ x 65 nails, one each side of top and bottom flange.

Interior loading bearing and bracing walls

SmartJoist shall be designed to support load bearing walls above when not stacked over wall below.

NOTE: Detail F7 with blocking panel is required for bracing walls.

Non load bearing cantilevers (balconies)

For cantilevered joists supporting load bearing walls see details C1-C4 on page 23
SmartJoist hangers

Specialised joist hangers

A range of more specialised joist hangers are available from Tilling Timber, some will be stock items and others will have a lead time before they could be supplied.

Specifiers of these more specialised brackets should contact Tilling Timber during the design phase of the project to ascertain:

1. What brackets are available that would best suit the proposed application
2. The lead time before selected joist hangers could be supplied
3. Whether SmartFrame engineers are required to design individual member connections

Example specialised brackets/connectors

Internal Flange Hangers - A range of internal flange hanger is available to suit 'L' shape connections and the edge joist in SmartJoist cassette floors

SmartJoist rafter brackets - Access is available to a range of rafter brackets especially designed to make use of the exceptional strength to weight ratio of SmartJoists and apply it to roof member applications. Rafter brackets available include:

1. Variable slope rafter connectors
2. Variable slope and skew rafter connectors
3. Variable ridge connectors

Heavy duty roof beam supports - Tilling Timber has access to a range of heavy duty support brackets for all applications including brackets especially designed to cater for supported beam at a wide range of angles.

An example is the Pryda® BBT125240 shown below

Individual designs - There are occasions where a generic off the shelf bracket is available for a particular application.

In certain circumstances, SmartFrame engineers may be available to provide individual designs on a fee for service basis for users of SmartFrame product. (conditions apply)

For more detailed information contact the tech support helpline on 1300 668 690 or at techsupport@tilling.com.au.
General connector installation details

Positive angle nailing

Correct nailing
Nail at wrong angle
Nail too long

Prevent rotation

Hangers provide some joist rotation resistance; however, additional lateral restraint may be required for deep joists.

Top mount hangers

Hanger overspread
If hanger is overspread, I-Joist may be raised above header, also, NO support for top flange.

Hanger not plumb
A hanger kicked out from the header can cause uneven surfaces.

Correct fasteners

Bracket capacities are based upon using the correct bracket nail as per the table within the SmartJoist Design Guide. Bracket nails have special heads to provide strength. Clouts, brads etc. are NOT suitable as bracket nails.

SmartJoist headers

Backer blocking each side, hanger nails must extend past the supporting joist’s web member into the backer blocking.

Bottom flange pulling off when backer block on one side only.

The top flange of the supporting joist must be supported by backer blocks to prevent cross grain bending and rotation.
Flange damage

- Flange damage becomes more critical the nearer it is to mid-span or an interior support. Flange damage is less critical in close proximity to an end support.
- How much flange damage is acceptable? A rule of thumb is “If you have to ask, it’s too much”. A saw kerf that knicks the corner of a flange on one lightly-loaded joist could well be acceptable.
- A joist with unacceptable flange damage cannot be repaired, rather a new joist must be added to take it’s place. The damaged joist does not have to be removed. Consult SmartJoist and SmartLVL tables to find an acceptable new joist that is shallower than the damaged joist so installation is easier. Consider double and triple joists. If the damaged joist is multi-span, the new joist only needs to go across the span(s) where the damage occurs.
- A single damaged joist can sometimes be trimmed off of adjacent undamaged joists (run a calculation within the SmartFrame software).

Web damage

- Web damage becomes more critical the nearer a support. Web damage is less critical near mid-span.
- Web holes can be too big to repair. A flange-to-flange rectangular hole longer than 450 mm located at mid-span probably warrants a new joist. A 150 mm round hole located right by a support probably warrants a new joist. Consult SmartJoist and SmartLVL tables to find an acceptable new joist that is shallower than the damaged joist so installation is easier. Consider double and triple joists. If the damaged joist is multi-span, the new joist only needs to go across the span(s) where the damage occurs.
- A single damaged joist can sometimes be trimmed off of adjacent undamaged joists (run a calculation within the SmartFrame software).
- Damage that could be confidently repaired in a single, isolated joist, might be judged too severe to repair if several, adjacent joists are involved
- If several small holes violate the 2x diameter proximity rule, but would fit inside a single acceptable hole, then the group of small holes is OK
- Hole repairs generally require a reinforcement that covers the full depth of the web and extends at least 300 mm past each side of the hole.

Damage report information required

1. In order to design a repair, the SmartFrame engineer will have to know all of the design information that is required to run SmartFrame software.
2. Provide a sketch of the damage showing it’s size, shape and location on the joist.
3. Indicate whether a pipe, duct, conduit, etc. must remain and be accommodated.
4. Indicate how many adjacent joists are affected in each case.

Field repairs to damaged SmartJoist webs

The SmartFrame system now includes the WebFix® (web reinforcement) developed to be a rapid “repair” to webs where penetrations have been placed at inappropriate locations, penetrations too large or other web damage which diminishes the strength of the member. This repair system is unique to SmartJoist applications.

Tilling Timber is the SOLE Australian distributor of this PATENT-ED system, which in most cases can be fixed around services that have been installed through the web penetrations.

The WebFix® does need to be designed into each situation by SmartFrame engineers and can ONLY be purchased from Tilling offices after the structural design is completed.
Backer and filler blocks

Top mount or universal hanger

- Large Gap
- Small Gap (3 mm ±)
- 2 rows of 3.75 x 75 nails at 150 mm spacing, clinched

Backer block

- Nail backer blocking with 75 x 3.15 mm nails. Refer to table for no. of nails required

Face mount or universal hanger

- Small Gap (3 mm ±)
- 2 rows of 3.75 x 75 nails at 150 mm spacing, clinched

Tight Fit

- 2 rows of 3.75 x 75 nails each end (Offset nails from opposite face by 75 mm), clinched

- For 2/51mm 2/70mm 2/90mm & 3/SJs with 1/setdown joist attached

- For 2/40mm & 2/44mm SJs with 1/setdown joist attached

Web stiffeners required for SJ40090 joists as per Detail F13

NOTES:

1. Use plywood sheathing for web stiffener with face grain parallel to long axis of the stiffener
2. Filler blocks noted are for the general requirements of the details within this design guide
3. Leave 3 mm gap between top of filler blocks and bottom of top flange
4. Support back of web during nailing to prevent damage to web/flange connection
5. Filler block is required full length of joist.

Filler blocks and web stiffeners

<table>
<thead>
<tr>
<th>SmartJoist code</th>
<th>Recommended filler block</th>
<th>Web stiffener material</th>
<th>stiffener</th>
<th>nails</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ20044</td>
<td>120 x 35</td>
<td>15 x 60 mm ply</td>
<td>4-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ24040</td>
<td>140 x 35</td>
<td>15 x 60 mm ply</td>
<td>4-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ24051</td>
<td>140 x 45</td>
<td>19 x 60 mm ply</td>
<td>4-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ24070</td>
<td>150 x 58 LVL</td>
<td>2/15 x 60 mm ply</td>
<td>4-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ24090</td>
<td>2/140 x 45</td>
<td>2/19 x 60 mm ply</td>
<td>5-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ25570</td>
<td>170 x 58 LVL</td>
<td>2/15 x 60 mm ply</td>
<td>4-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ30040</td>
<td>190 x 35</td>
<td>15 x 60 mm ply</td>
<td>4-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ30051</td>
<td>190 x 45</td>
<td>19 x 60 mm ply</td>
<td>4-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ30070</td>
<td>150 x 58 LVL</td>
<td>2/15 x 60 mm ply</td>
<td>4-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ30090</td>
<td>2/190 x 42 LVL</td>
<td>2/19 x 60 mm ply</td>
<td>5-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ30095</td>
<td>2/190 x 42 LVL</td>
<td>2/21 x 60 mm SmartRim</td>
<td>5-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ36058</td>
<td>250 x 50</td>
<td>2/12 x 60 mm ply</td>
<td>5-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ36090</td>
<td>2/240 x 45</td>
<td>2/19 x 60 mm ply</td>
<td>5-3.15 x 65</td>
<td></td>
</tr>
<tr>
<td>SJ40090</td>
<td>2/240 x 45</td>
<td>2/19 x 60 mm ply</td>
<td>5-3.15 x 65</td>
<td></td>
</tr>
</tbody>
</table>
Concentrated loads on SmartJoists

Web stiffeners under concentrated loads are required as shown below for concentrated loads that exceed 6.5 kN ONLY.

NOTE:
1. Web stiffeners are NOT required at end bearing supports when span length are taken from the SmartJoist Design Guide, except where they are required to prevent rotation if the joist hanger does not laterally restrain the top flange.
2. Web stiffeners may be required at inner supports under concentrated loads. Consult the appropriate tables.

(a) filler blocks

Multiple SmartJoist members

(b) SmartJoist MultiJoist Clips MJC

The SmartFrame I-Clip is Australia’s first backer and filler free solution to join multiple SmartJoist members

2 ply SmartJoist supporting concentrated loads

<table>
<thead>
<tr>
<th>No of MJC’s</th>
<th>Max incoming Concentrated Load (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>16.4</td>
</tr>
<tr>
<td>8</td>
<td>24.6</td>
</tr>
</tbody>
</table>

2 ply SmartJoist supporting regular loads

<table>
<thead>
<tr>
<th>No of MJC’s</th>
<th>Max incoming Regular Load (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8.2</td>
</tr>
<tr>
<td>4</td>
<td>12.3</td>
</tr>
</tbody>
</table>
Fastener spacing

Minimum single row fastener spacing into SmartJoist flanges

<table>
<thead>
<tr>
<th>Fastener type and size</th>
<th>40 mm flange</th>
<th>44 mm flange</th>
<th>51 mm flange</th>
<th>58-70 mm flange</th>
<th>90 mm flange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>75</td>
<td>75</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>2.8 x 60</td>
<td>100</td>
<td>90</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>3.15 x 60</td>
<td>150</td>
<td>150</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Screws</td>
<td>9g x 45</td>
<td>150</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>10g x 50</td>
<td>150</td>
<td>100</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

NOTES:

1. Nailing of bottom plate at 100 mm centres through floor sheathing and into top flange is permitted
2. Minimum nail/screw spacing is shown above, maximum nail/screw spacing is set by the flooring manufacturer, in absence of manufacturers data, 300 mm centres
3. Tighter effective nail spacing may be obtained by offsetting nail/screw rows a minimum of 12 mm and maintaining a 10 mm minimum edge distance.
4. Do not use nails/screws of a larger diameter than those shown above when attaching sheathing to SmartJoists

Limited end notching at supports

The cutting of notches in the ends of joists may reduce the allowable end reactions.

The amended end reaction capacities of SmartJoists with a 12 mm notch are as follows:

- Without web stiffeners - 80% of end reactions.
- With added web stiffeners (as per detail F13) - Full end reaction capacity

DO NOT OVER CUT FLANGES. SUBSTANTIAL REDUCTIONS IN CAPACITY MAY OCCUR IF FLANGES ARE OVER CUT

To maintain the end reaction capacities above, end flange notching is strictly limited to:

1. Notch depths NOT greater than 12 mm
2. Notches cleanly cut - NO over cutting
3. Notch length not to exceed more than 5 mm past the support.

Example fixing of SmartJoists to steel beams
Example fixing of SmartJoists to steel beams (Cont’d)

Tie down (bracing wall) details

The tie-down needs of the structure are related to the applied wind loads. Reference should be made to AS 1684 for further guidance on this issue. The general details relating to the tie-down provisions of solid end section timber may be adopted for SmartJoists, except that under NO circumstances is it permitted to bolt through either the top or bottom flange, except when the joist is fully supported upon a wall plate or similar as shown below.

Lower Flange Bearing

- **FACE MOUNT HANGER**
 - Skew nail top flange to fixing plate with 2/3.15mm dia x 65mm nails
 - Filler block depth must fit all face mount nails
 - Minimum 35mm thick
 - M10 bolt with 42mm LVL15 timber bridging cleat to achieve 6.1kN characteristic uplift capacity
 - or M12 bolt with 58mm LVL15 timber bridging cleat to achieve 8kN characteristic uplift capacity

- **LOWER FLANGE BEARING**
 - 2 of 3.15 x 65mm skew nails, one each side, 2/3 up flange a minimum of 30mm from the end
 - Timber packer, minimum of 35mm bearing to steel and SmartJoist
 - Do not exceed more than 5mm past support.
 - Packer to be securely fastened to steel beam

- **DO NOT DRILL THROUGH EITHER FLANGE OF SmartJoists unless they are fully supported on wall plate or similar**

Extra details where bracing walls are parallel to the joists can be found in the SmartJoist Design Guide, the SmartFrame software or at www.tilling.com.au
Cyclone rod tie down for cantilevered SmartJoist floors

Cyclone strap capacities

Where the strap ends of the cyclone strap are wrapped around the wall plate or other timber member and are fixed with 4 of 3.15 Ø x 35 nails, the design capacity ØN of 15.3 kN is applicable, regardless of the timber joint group. Tests have proven that bending the legs of cyclone straps around the timber increases the ultimate load capacity.

Joist/beam connections supporting offset load bearing walls

Modern building designs frequently call for the upper storey of a two storey dwelling to be set back from the lower wall to allow sufficient light access to all areas of the building. Provided that the SmartJoists have been designed to support this offset load, no special provisions need to be made for their support EXCEPT in the following support conditions:

<table>
<thead>
<tr>
<th>Maximum Roof Area Supported (m²)</th>
<th>Joist supported on joist hanger RA1</th>
<th>Lower flange bearing RA2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Joist spacing (mm)</td>
<td>Sheet</td>
<td>Tile</td>
</tr>
<tr>
<td>3500</td>
<td>21.7</td>
<td>15.0</td>
</tr>
<tr>
<td>4000</td>
<td>21.1</td>
<td>14.5</td>
</tr>
<tr>
<td>4500</td>
<td>20.5</td>
<td>13.9</td>
</tr>
<tr>
<td>5000</td>
<td>20.0</td>
<td>13.4</td>
</tr>
<tr>
<td>5500</td>
<td>19.4</td>
<td>12.1</td>
</tr>
</tbody>
</table>

SmartJoist Installation Guide 17 Aug 2019
Vertical laminations may be achieved by adopting the procedures described in clause 2.3 of AS1684, however these procedures should be considered as the minimum requirements to achieve the desired effect.

Experience with SmartLVL beams indicates that this degree of fixing may not satisfactorily prevent cupping of individual components as a result of the ingress of moisture between laminates during construction. The suggested method of vertical lamination below provides a greater level of fixity between individual components, and with the use of an elastomeric adhesive, also prevents moisture penetration between the laminates.

Multiple member laminating of top loaded beams (symmetrical loading)

The edges of the individual sections must be carefully aligned to each other so that the composite beam is flat, allowing the applied loads to be equally shared.

- Depths up to and including 300 mm: 2 rows of nails as shown above at 300 mm centre
- Depths in excess of 300 mm: 3 rows of nails as shown above at 300 mm centres.
Beams supporting SmartJoists – multiple member laminations (cont’d)

Multiple member laminating of top loaded beams (Non-symmetrical loading)

<table>
<thead>
<tr>
<th>Combination 1</th>
<th>Combination 2</th>
<th>Combination 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 pieces of 35 or 42 mm</td>
<td>3 pieces of 35 or 42 mm</td>
<td>1 piece of 35 or 42 mm, 1 piece of 58 or 75 mm</td>
</tr>
</tbody>
</table>

Notes:
1. Table values are for 40 kg/m² floors.
2. The table values for nails may be doubled for nails at 150 mm centres, and tripled for nails at 100 mm centres.
3. The nail schedules shown apply to both sides of a three (3) piece beam.
4. Bolts are to be grade 4.6 commercial bolts conforming to AS 1111. Bolt holes are to be a maximum of 13 mm diameter and are to be located NOT less than 50 mm from either edge.
5. All bolts shall be fitted with a washer at each end, of a size NOT less than that given in AS 1720.1 table 4.11.
How to use the maximum uniform side load table

Example: see diagram above

Beam of 2 SmartLVL loaded on both side (Combination 1)
FLW 1 = 2800 mm, FLW 2 = 2300 mm
Total FLW = 2800 + 2300 = 5100 mm.
1. Use SmartFrame software or SmartLVL safe load tables to size the two member section to support the FLW of 5100 mm.
2. Choose the larger of the side FLW's carried by the beam, in this case 2800 mm.
3. Enter the table at the "Combination 1" row and scan across to a table value greater than 2800 mm. The first value in the row at 3600 mm is greater than the 2800 mm required.
4. Thus adopt 2 rows of 3.75 \(\Phi \times 90 \) mm nails at 300 mm centres.

SmartJoist/SmartRim® characteristic blocking capacities

SmartRim®

SmartRim rimboard is an alternative solution to blocking with SmartJoists (either long length of cut to length) to support vertical and lateral wall loads as part of a floor or roof framing system.

SmartRim is a 19 mm LVL (2 veneers are cross laminated for stability) and is sold in 3.6 m lengths, precision ripped to match the height of the SmartJoist range up to and including 360 mm. (400 mm SmartRim in QLD only). Fixing of rimboard is described in detail in SmartJoist—GENERAL NOTES item 3 on page 5 of the SmartJoist Design Guide.

SmartRim has a joint strength group of JD4 on the wide face for nails, screws and bolts.

SmartJoist/SmartRim characteristic capacity values (see notes below)

<table>
<thead>
<tr>
<th>Vertical load capacity (kN/m)</th>
<th>Horizontal load transfer capacity (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Notes:
1. Vertical load capacity above is for instantaneous load conditions and must be multiplied by the appropriate \(k_1 \) factor for load condition under consideration.
2. Vertical load capacity above already includes the \(k_{12} \) factor for up to 400 mm depth as per clause 12.3 of AS 1720.1.
3. Horizontal load capacity above is an instantaneous load condition, with the \(k_1 \) for lateral bracing loads usually 1.0.
4. The above horizontal load capacity is limited by the fixing of the SmartJoist /SmartRim to the frame and can ONLY be achieved if the fixing detail on page 7 of the SmartJoist Design Guide is strictly adhered to.
Penetrations within SmartJoist and SmartRim

The maximum allowable hole size for a SmartJoist/SmartRim shall be \(\frac{2}{3} \) of the rim board depth as shown below.

The length of the SmartJoist/SmartRim segment containing a hole shall be at least 8 times the hole size.

SmartJoist hole sizes and minimum length

<table>
<thead>
<tr>
<th>SmartJoist/SmartRim Depth (mm)</th>
<th>Maximum allowable size ((a)) ((b)) (mm)</th>
<th>Minimum length of SmartJoist/SmartRim board segment ((c)) for the maximum allowable hole size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>130</td>
<td>1050</td>
</tr>
<tr>
<td>240</td>
<td>160</td>
<td>1280</td>
</tr>
<tr>
<td>300</td>
<td>200</td>
<td>1600</td>
</tr>
<tr>
<td>360</td>
<td>235</td>
<td>1900</td>
</tr>
<tr>
<td>400(^{(d)})</td>
<td>265</td>
<td>2100</td>
</tr>
</tbody>
</table>

(a) These hole provisions do not apply to SmartJoist/SmartRim installed over openings such as doors or windows

(b) The diameter of the round hole or the longer dimension of the rectangular hole

(c) The lengths of the SmartJoist/SmartRim segment per wall line. For multiple holes, the minimum length of SmartJoist/SmartRim segment shall be 8 times the sum of all hole sizes.

Application Notes

1. Do not cut holes in SmartRim installed over openings, such as doors or windows, where the SmartRim is not fully supported, except that holes of 40 mm or less in size are permitted provided they are positioned at the middle depth and in the middle \(\frac{1}{3} \) of the span (see note 5 for minimum hole spacing).

2. Field-cut holes should be vertically centred in SmartRim and at least one hole diameter or 150 mm whichever is less, clear distance away from the end of the wall line. Holes should never be placed such that they interfere with the attachment of the rim board to the ends of the floor joist, or any other code-required nailing.

3. While round holes are preferred, rectangular holes may be used providing the corners are not over-cut. Slightly rounding corners or pre-drilled corners with a 25 mm diameter bit is recommended.

SmartRim over an opening

Do not cut holes in SmartRim over an opening except for holes of 40 mm or less in size (see note 1).

SmartJoist/SmartRim near concentrated vertical load

4. When concentrated loads are present on the SmartJoist/SmartRim (loads not supported by any other vertical-load-carrying members such as squash blocks), holes should not be placed in the SmartJoist/SmartRim within a distance equal to the depth of the SmartJoist/SmartRim from the area of loading.

5. For multiple holes, the clear spacing between holes shall be at least two times the diameter of the larger hole, or twice the length of the longest rectangular hole. This minimum hole spacing does not apply to holes of 40 mm or less in diameter, which can be placed anywhere in the rim board (see note 1 for holes over opening) except that the clear distance to the adjacent hole shall be 75 mm minimum.

Multiple holes for SmartJoist/SmartRim

6. All holes shall be cut in a workman-like manner in accordance with the limitations listed above.
SmartJoists can be “rafter cut” but only within the limitation shown below.

Rafter cuts are limited to:

1) 115 mm MINIMUM end height
2) MINIMUM Roof Slopes of 1 in 2 (approximately 26.5°), and
3) Must be blocked at the end to prevent rotation of the joist.

Joists without reinforcement are limited to design shear and end reactions up to 6.5 kN. Ply reinforcement can be added to joists with rafter cuts to increase the shear and end reaction capacity of the joist. The detail below shows the proper installation of the reinforcement. With the reinforcement added, the end reaction and shear capacity increase to 12.7 kN.

Duration of load increases are permitted as per AS:1720.1.

Rafter cuts of SmartJoists

- Minimum end height: 115 mm
- Minimum roof slope: 1 in 2 (26.5°)
- Must be blocked at the end to prevent rotation

Oblique connection details

- Fix SmartJoist to angle plate with 10 x 30 mm long Type 17 countersunk screws.
- Min thickness of bearer/waling plate: 42 mm
- Tight fit continuous filler as per detail F15/F15A
- Fix angle plate to bearer or waling plate with 12 @ No. 12 x 35 mm long Type 17 hexagonal head screws.
- Min thickness of bearer/waling plate: 42 mm
- 300 mm minimum
- 75 x 50 x 5 Unequal Angle
- 150 mm long support, long leg vertical - See detail
- Fix SmartJoist to U/S/A angle with 3 @ No. 10 x 30 mm Type 17, countersunk screws
- 75 x 50 x 5 unequal angle
- 300 mm long support, long leg vertical - See detail
SmartJoist hole and duct charts

Note: The most accurate method to design the allowable web penetration size and distance from support for SmartJoists is to use the SmartFrame software. The table below will give conservative results in some instances. Also, advice on hole size and location may be obtained by contacting the Technical Support Helpline on 1300 668 690 or at techsupport@tilling.com.au.

<table>
<thead>
<tr>
<th>Joist code</th>
<th>Joist span* (mm)</th>
<th>Joist spacing (mm)</th>
<th>Circular/square holes</th>
<th>Rectangular holes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hole diameter/square hole width (mm)</td>
<td>Hole diameter/length (mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75 100 125 150 175 200 225 250</td>
<td>125x150 150x300 175x350 200x400</td>
</tr>
</tbody>
</table>

Minimum distance from any support to the centre of the hole (mm)

- **Note 3:** A 40 mm dia hole may be cut anywhere in the web.

Rectangular holes

- Don't make holes larger than 40 mm dia within the cantilever.

Minimum distance from hole chart:

- Minimum distance from hole chart
- A 40 mm dia hole may be cut anywhere in the web
- Do not cut holes larger than 40 mm dia within the cantilever.
<table>
<thead>
<tr>
<th>Joist code</th>
<th>Joist span* (mm)</th>
<th>Joist spacing (mm)</th>
<th>Circular/square holes</th>
<th>Rectangular holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ24090</td>
<td>600-999</td>
<td>300 to 600</td>
<td>300 300 300 300 300 300 ns</td>
<td>Depth x width (mm)</td>
</tr>
<tr>
<td></td>
<td>1000-1499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td>75x150</td>
</tr>
<tr>
<td></td>
<td>1500-1999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td>150x300</td>
</tr>
<tr>
<td></td>
<td>2000-2499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td>175x350</td>
</tr>
<tr>
<td></td>
<td>2500-2999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td>200x400</td>
</tr>
<tr>
<td></td>
<td>3000-3499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3500-3999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000-4100</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td>SJ25570</td>
<td>600-999</td>
<td>300 to 600</td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-1499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500-1999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000-2499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500-2999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000-3499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3500-3999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000-4100</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td>SJ30040</td>
<td>600-999</td>
<td>300 to 600</td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-1499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500-1999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000-2499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500-2999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000-3499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3500-3999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000-4100</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td>SJ30051</td>
<td>600-999</td>
<td>300 to 600</td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-1499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500-1999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000-2499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500-2999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000-3499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3500-3999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000-4100</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td>SJ30070</td>
<td>600-999</td>
<td>300 to 600</td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-1499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500-1999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000-2499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500-2999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000-3499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3500-3999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000-4499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4500-4600</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td>SJ30090</td>
<td>600-999</td>
<td>300 to 600</td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000-1499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500-1999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000-2499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2500-2999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000-3499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3500-3999</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000-4499</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4500-4900</td>
<td></td>
<td>300 300 300 300 300 300 ns</td>
<td></td>
</tr>
</tbody>
</table>

* Joist span is the distance between joists.

Assumed load (DL = 62 kg/m², FLL = 2 kPa, FPL = 1.8 kN)
SmartJoist hole charts (Cont’d)

Assumed load (DL = 62 kg/m², FLL = 2 kPa, FPL = 1.8 kN)

Circular/square holes

<table>
<thead>
<tr>
<th>Joist code</th>
<th>Joist span (mm)</th>
<th>Joist* spacing (mm)</th>
<th>Hole diameter/square hole width (mm)</th>
<th>Minimum distance from any support to the centre of the hole (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75</td>
<td>100</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>SP30095</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600-999</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>1000-1499</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>1500-1999</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>2000-2499</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>2500-2999</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>700</td>
</tr>
<tr>
<td>3000-3499</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>1000</td>
</tr>
<tr>
<td>3500-3999</td>
<td>300</td>
<td>300</td>
<td>700</td>
<td>1300</td>
</tr>
<tr>
<td>4000-4499</td>
<td>300</td>
<td>300</td>
<td>1100</td>
<td>1600</td>
</tr>
<tr>
<td>4500-4999</td>
<td>300</td>
<td>300</td>
<td>1500</td>
<td>2000</td>
</tr>
<tr>
<td>5000-5499</td>
<td>300</td>
<td>300</td>
<td>1900</td>
<td>2300</td>
</tr>
</tbody>
</table>

Rectangular holes

<table>
<thead>
<tr>
<th>Joist span (mm)</th>
<th>Hole diameter/square hole width (mm)</th>
<th>Depth x width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>3000-3499</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

Notes:

1. The hole chart is generated on a maximum floor dead load of 62 kg/m² with no wall or roof loads. It therefore does not apply for joists supporting either parallel or perpendicular load bearing walls. These scenarios can be analysed by using the appropriate model within the SmartFrame software. Help can be obtained by contacting the SmartFrame Customer Helpline on 1300 668 690 or at techsupport@tilling.com.au

2. Hole locations are suitable for joist spacing’s up to 600 mm centres. Holes may be permitted closer to supports for some members when spacing’s of 450 or 300 mm are used

3. The clear distance between holes must equal or exceed twice the diameter of the largest hole, or twice the longest side of a rectangular hole and no more than 3 holes in excess of 75 mm are allowed in any span

4. Do not cut or damage flanges under any circumstances

5. Except as noted in 1 and 2 above, a 40 mm hole at a minimum of 450 mm centres is allowed to be drilled anywhere in the web EXCEPT in cantilevered spans

6. If possible, holes in web should be positioned mid height, minimum edge clearance from any flange is 6 mm

7. A group of round holes at approximately the same location shall be permitted if they meet the requirements for a single round hole circumscribed around them.
Example construction details for load bearing cantilevers

Note:
Option 1 with cantilever reinforced with an extra SmartJoist is equivalent to option 2 with 2 sheets of plywood.
SmartJoists supporting parallel load bearing walls

Fitted floors

Double SmartJoists required for fixing of floor and ceiling, and when required by table below AND for SmartJoists with 40 mm wide flanges.

Platform floors

Single SmartJoist with flange > 50 mm may be used, but requires alternative fixing for ceiling. NOT suitable for SmartJoists with 40 mm wide flanges e.g. SJ24040.

Joists continuously supported by lower walls

Fix 90x45mm F5 compression block to SmartJoist where load exceeds 6.5 kN*

Concentrated point loads (eg, girders, TG’s all beams & jamb studs)

Fix 90x45 mm F5 compression block to SmartJoist where load exceeds 6.5 kN*

Concentrated point loads (eg, girders, TG’s all beams & jamb studs)

Single SmartJoists with flange width < plate width

Fix 90x45mm F5 compression block to SmartJoist where load exceeds 6.5 kN*

Concentrated point loads (eg, girders, TG’s all beams & jamb studs)

Single SmartJoists with flange width >= plate width

Fix 90x45mm F5 compression block to SmartJoist where load exceeds 6.5 kN*

Concentrated point loads (eg, girders, TG’s all beams & jamb studs)

Joist non-continuously supported by lower wall

Fix 90x45mm F5 compression block to single rimboard where load exceeds 26.0 kN*

Single SmartRim

Detail F5 and F8 are used to transfer concentrated loads where walls are perpendicular to the joists. Details F30a, F30b and F30c above must be used to transfer concentrated loads through parallel SmartJoists where the instantaneous reaction exceeds 6.5 kN and exceeds 26.0 kN for single SmartRim (reaction needs to be factored for load duration).

The table in the SmartJoist Design Guide gives allowable spans for single and double joists NOT continuously supported by a parallel wall. Care must always be taken to adequately support the web of the joists from concentrated point loads from above by adopting details F13.
Warning: Do not allow workers or loads on roof until ALL blocking, hanger, bracing and fastening is completed. See Safety warning.

Typical SmartJoist Roof details

- Do not bevel cut joists beyond inside face of wall.
- SmartJoist blocking or similar is required at bearing to provide lateral support.
- Bevel cut stiffeners to match roof slope. See Detail F12b.
- Web stiffeners required each side of SmartJoist.
- Fixing plate to be bolted to steel. Bolt size as per Eng specific ation.
- Birdsmouth cut shall bear fully and not overhang the inside face of the plate.
- Variable slope & skew joist hanger

Note: Tie-down details to be designed to AS 1684.2 for the respective wind loads with the SmartFrame software

SmartJoist Installation Guide 28 Aug 2019
Typical SmartJoist roof details (cont’d)

Web stiffeners required both sides

Birdsmouth cut at bearing. (Birdsmouth cuts limited to joist spacing of Max 600 mm)

Web stiffener as per detail F12b

Minigrips or similar as per manufacturer specification

Fix rafters to bevelled plate (min 50 mm wide for slopes > 1 deg) with 1/75 x 3.15 mm nail (one on each side)

Tie-down strap as per manufacturer specification

Fasca fixed to end of rafters with nail into web-stiffener, top flange & bottom flange

Min 50 mm bevelled plate for slopes greater than 1 degree.

Trim & add blocking (one each side) as desired for fascia support (cut to fit)

Use 2 rows of 75 x 3.15 mm nails at 100 mm centres

Rafter tie-down and blocking

Panel backer block on both sides (With 18 nails)

Bevelled plate Birdsmouth cut not permitted

Twist strap on both sides No. of nails & nail size as per manufacturer specification

30 degrees max. angle

SmartRim blocking. (Toe nail to top plate at 150mm on center.) Install as joists are set.

Bevelled web stiffener on both sides as per detail F13

Rafter tie-down and blocking

600 mm overhang - 90x42mm LVL15 as extension rafter and fix to SmartJoist with 2 rows of 65 x 3.15 mm nails at 200 mm centres

900 mm overhang - 130x42mm LVL15 as extension rafter and fix to SmartJoist with 2 rows of 65 x 3.15 mm nails at 200 mm centres

90 x 45 extension rafter for fascia support

Birdsmouth cut at bearing. (Birdsmouth cuts limited to joist spacing of Max 600 mm)

Bevelled web stiffener on both sides as per detail F13

25x1.0mm G.I. strap with 7/35 x 3.15mm nails each end

Variable Slope & Skew Joist Hanger

25x1.0mm G.I. strap with 7/35 x 3.15mm nails each end

Bevelled web stiffener on both sides

200 and 240 mm deep rafter: Install 1 long multigrip bracket each side

300, 360 and 400 mm deep rafter: Install 2 long multigrip bracket each side

25x1.0mm G.I. strap with 7/35 x 3.15mm nails each end

Bevelled web stiffener on both sides

200 and 240 mm deep rafter: Install 1 long multigrip bracket each side

300, 360 and 400 mm deep rafter: Install 2 long multigrip bracket each side

600 mm overhang - 90x42mm LVL15 as extension rafter and fix to SmartJoist with 2 rows of 65 x 3.15 mm nails at 200 mm centres

900 mm overhang - 130x42mm LVL15 as extension rafter and fix to SmartJoist with 2 rows of 65 x 3.15 mm nails at 200 mm centres

90 x 45 extension rafter for fascia support

Birdsmouth cut at bearing. (Birdsmouth cuts limited to joist spacing of Max 600 mm)

Bevelled web stiffener on both sides as per detail F13

25x1.0mm G.I. strap with 7/35 x 3.15mm nails each end

Variable Slope & Skew Joist Hanger

25x1.0mm G.I. strap with 7/35 x 3.15mm nails each end

Bevelled web stiffener on both sides

200 and 240 mm deep rafter: Install 1 long multigrip bracket each side

300, 360 and 400 mm deep rafter: Install 2 long multigrip bracket each side

30 degrees max. angle

SmartRim blocking. (Toe nail to top plate at 150mm on center.) Install as joists are set.

Bevelled web stiffener on both sides as per detail F13

Rafter tie-down and blocking

Panel backer block on both sides (With 18 nails)

Bevelled plate Birdsmouth cut not permitted

Twist strap on both sides No. of nails & nail size as per manufacturer specification

30 degrees max. angle

SmartRim blocking. (Toe nail to top plate at 150mm on center.) Install as joists are set.

Bevelled web stiffener on both sides as per detail F13

Rafter tie-down and blocking

Panel backer block on both sides (With 18 nails)

Bevelled plate Birdsmouth cut not permitted

Twist strap on both sides No. of nails & nail size as per manufacturer specification

30 degrees max. angle

SmartRim blocking. (Toe nail to top plate at 150mm on center.) Install as joists are set.
Typical SmartJoist Roof details (cont’d)

- **SmartJoist blocking**
 - 4/35 x 3.15mm nails per each blocking

- **Roof purlin**
 - 4/75 x 3.15mm nails per each blocking

- **1/35 x 3.15mm nail**
 - per rafter

- **2/75 x 3.15mm nails**
 - per rafter

- **4/75 x 3.15mm nails**
 - per each blocking

- **25 x 1.0 mm G.I. strap with 7/35 x 3.15mm nails each end**

Lateral restraint at supports

- **Fix rafters to support with 1/75 x 3.15mm nail**
 - (one on each side)

- **Bevelled plate or Birdsmouth cut at bearing**

- **Fix roof batten to rofter with 2/35 x 3.15mm nails**

- **Fix cut-to-length blocking to support with 4/65 x 3.15mm nail per each blocking**

- **Nail metal strap to rafters and supports with 3/35 x 3.15mm nails**

- **Fix rafters to support with 1/75 x 3.15mm nail**
 - (one on each side)

- **Metal strap over rafter**

- **Roof batten**

- **Backer block with 75 x 3.15mm nails. Refer to table below for no. of nails required**

- **Nail backer blocking with 75 x 3.15mm nails. As per detail F15 or F15A**

- **Fix rafters to support with 1/75 x 3.15mm nail**
 - (one on each side)

- **Roof batten**

- **Double-bevelled plate on beam or wall**

- **Fix roof batten to rofter with 2/35 x 3.15mm nails**

- **Fix cut-to-length blocking to support with 4/65 x 3.15mm nail per each blocking**

Trimming of roof openings

- **Lateral restraint for rafters**
 - Use of ceiling options to provide lateral support

- **Ceiling battens fixed to underside**
 - (Max. batten spacing of 600 mm)

- **Ceiling fixed to the top of the bottom flange**

- **Outrigger rafters**
 - LVL Rafters

Lateral restraint - SmartJoist blocking fixing

- **Rafter**
 - Ceiling
 - Ceiling battens

- **Roof batten**
 - SmartJoist blocking
 - Roof sheathing
SmartJoist Installation Guide

31 Aug 2019

Typical SmartJoist rafter box gutter rebate details

Box gutter rebates

Rebates for box gutters are permissible within a roof constructed with SmartJoist rafters to the MAXIMUM rebate limits as shown below.

- Fig BG1 with 2 pieces of 90 x 45 nailed to the web reduces shear capacity by 40%
- Fig BG2 with 2 pieces of 17 mm F14 ply nailed to the web maintains full shear capacity

Given that the design shear values at the end of rafters with lightweight roofs are usually very low compared to the allowable shear, in most instances fig BG1 is satisfactory to provide a box gutter rebate within the SmartJoist rafters, however the remaining shear capacity MUST be checked.

It is recommended that designers wishing to cut box gutter rebates in SmartJoist rafter contact the Technical Support Helpline on 1300 668 690 or at techsupport@tilling.com.au for further advice on this issue.

SmartJoist rafter tie-down

SmartJoist rafters need to be tied down in wind uplift situations in a similar manner to solid timber as shown in section 9 of AS 1684. The examples shown in this section are equally applicable to SmartJoists except that web stiffeners as per detail F13 and R1 must be installed to the SmartJoists where either skewed nails or framing anchors are chosen as the tie down method before the uplift capacities in the tables in section 9 of AS 1684 can be adopted.

All tie down types that involve a strap over the top of the SmartJoist rafters, or involving the bolting down of a member above the rafter running in the perpendicular direction, require no modification to the SmartJoist and the uplift capacities in the tables in section 9 of AS 1684 may be used.

Framing anchor as per table in section 9 of AS 1684, 4 / 2.8 mm dia nails to each end

Web stiffeners as per detail F12b and R1 of this Design Guide

A = 200*, 240, 255 & 300 mm depth
B = 50 mm when A = 240 and 255 mm
B = 100 mm when A = 300 mm
200 mm - Requires ply infil, 90 x 45 solid timber reinforcement is not suitable

17 mm F14 ply - 600 mm long both sides of SmartJoist

Fasten with 3 rows of 100 x 3.75 dia nails at 100 mm centres.

200 mm - Requires ply infil, 90 x 45 solid timber reinforcement is not suitable

Fasten with 2 rows of 100 x 3.75 dia nails at 150 mm centres. Stagger rows

SmartJoist Installation Guide 31 Aug 2019