
Red Alert SmartLVL 12 Design Guide

(includes WA SmartLVL 12 underpurlins and struts)

Scope of this publication

This Design Guide and Load Tables assist in the selection of SmartLVL 12 (including *Red Quest*) for a limited number of common structural arrangements met in domestic construction.

Methods of developing lateral restraint and providing adequate support, adequate anchorage against wind uplift, and overall structural stability are outside the scope of this publication, however some limited examples have been reproduced within this document.

Information on the above matters can be obtained from AS 1684 Residential timber-framed construction or from a structural engineer experienced in timber construction.

Tilling Timber Pty Ltd have structural engineers at the SmartFrame Design Centre who can be contacted for advice on matters concerning the use of its engineered timber products in timber construction at techsupport@tilling.com.au or on the Techsupport HelpLine 1300 668 690.

Substitution of other products

All load tables in this document are designed using ingrade tested properties of SmartLVL 12 as distributed by Tilling Timber Pty Ltd. Other manufacturers' LVL may have different properties and therefore cannot be designed using these span tables.

Copyright

Copyright of this publication remains the property of Tilling Timber Pty Ltd, and reproduction of the whole or part of this publication without written permission from Tilling Timber Pty Ltd is prohibited.

Certification

As a professional engineer, qualified and experienced in timber engineering, I certify that the use of the SmartLVL 12 members as shown in these tables, and installed in accordance with the provisions of this Design Guide, complies to the National Construction Code (NCC). These span tables have been prepared in accordance with standard engineering principles, the relevant test reports and Australian standards, ie:

- AS 1720.3 Design criteria for timber-framed residential buildings
- AS 1720.1 Timber structures design methods
- AS 4055 Wind loads for houses
- AS/NZS 4063 Characterisation of structural timber
- AS/NZS 4357 Structural laminated veneer lumber

Craig Lay

CRAIG KAY, RPENB, BDC0730, PE0001869, RPEQ 05100, CC5635C, NER National Product Engineer

About SmartLVL 12

Description

SmartLVL 12 is a structural Laminated Veneer Lumber (LVL) manufactured exclusively for Tilling Timber by toll manufacturers in conformance to the quality controlled process requirements of AS/NZS 4357 - Structural Laminated Veneer Lumber. For framing applications It is supplied coloured red under the *Red Mest* trade name, but has a clear H_2O shield water resistant for other general applications such as underpurlins and struts.

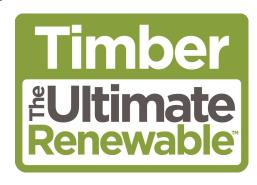
Forest stewardship

SmartLVL 12 is manufactured from wood fibre from sustainably managed plantation forests and is produced under a PEFC certified chain of custody system. CFCC GB/T 28952-2018, PEFC SAT 2002:2013.

Product certification

Compliance with process based quality control requirements is third party audited by CMI Certification, and the audits, together with end product testing is used as the basis for Product Certification by CMI ProdCert as a JAS-ANZ accredited Product Certification body.

JAS-ANZ stands for the government established "Joint Accreditation System of Australia and New Zealand" which exists as the peak organisation for accreditation of Product Certification bodies.


Preservative Treatment options

All SmartLVL 12 including *Red Olect* is supplied with H2s glueline preservative treatment for use South of the Tropic of Capricorn or SmartGuard H2 or H3 post production pressure treatment, with all treatments in conformance to AS/NZS 1604.1:2021.

Sustainability

Wood is the right choice for a host of construction applications. It is the earth's natural, energy-efficient, and renewable building material. The miracle in today's engineered wood products is that they make more efficient use of the wood fibre resource to make stronger Plywood, Oriented Strand Board (OSB), I-joists, Glued Laminated Timber (GLT) and Laminated Veneer Lumber (LVL). That is good for the environment and good for designers seeking strong, efficient, and striking building design.

For every tonne of wood grown, a young forest produces 1.07 tonnes of oxygen and absorbs approximately 1.47 tonnes of carbon dioxide. This is good news for a healthy planet. Wood is a perfect material for the environment, for design, and for strong, lasting construction.

The information contained in this product brochure is current as at August 2025 and is based on data available to Tilling Timber Pty Ltd at the time of going to print. Tilling Timber Pty Ltd has used its reasonable endeavours to ensure the accuracy and reliability of the information contained in this document and, to the extent permitted by law, will not be liable for any inaccuracies, omissions or errors in this information nor for any actions taken in reliance on this information. Tilling Timber Pty Ltd reserves the right to change the information contained in this document without prior notice. It is important that you call the techsupport Helpline on 1300 668 690 to confirm that you have the most up to date information available.

Designing with SmartLVL 12

The design information contained within this Design Guide is for the 3rd party certified properties of SmartLVL 12 only. Other manufacturers' LVL may have different properties and therefore cannot be designed using this information.

Product specification

Veneers:	Thickness:	1.9 - 3.2 mm		
	Species:	Masson Pine (Pinus massoniana) or Red Pine (Pinus sylvestris)		
	Grade:	CD (Metriguard graded)		
	Joints:	Face scarf and overlap		
	Length:	± 10 mm		
Dimensional	Depth:	≤ 200 mm ± 1 mm		
tolerances:		≥ 201 mm ± 2 mm		
tolerancesi	Thickness:	- 0, +2 mm at 12% moisture content		
Adhesive:	Phenol Formaldehyde (Type "A", AS 2754.1)			
Formaldehyde emission class:	E ₀ (Table 1 AS/NZS 4357) H2S Glueline treatment to AS 1604.1			
Treatment:				

Limit state design characteristic properties

Timber Strength Properties: ⁽¹⁾							
Bending - Edge	f' _b	46	MPa				
Bending - Flat	f' _b	46	MPa				
Tension Parallel to grain	f'_t	20	MPa				
Tension Perpendicular to grain	f'_{tp}	0.5	MPa				
Compression Parallel to grain	f'c	30	MPa				
Compression Perpendicular to grain - Edge	e f'p	10	MPa				
Compression Perpendicular to grain - Flat	f'p	10	MPa				
Shear - Edge	f's	4.5	MPa				
Average Elastic Modulus	Ε	12,000	MPa				
Average Modulus of Rigidity	G	600	MPa				
Average Density		600	kg/m³				
Moisture Content		12-15%					
Joint strength	Face	JD4					
	Edge	JD4					
End (st	ud screw)	JD4					

(1) Dry conditions

Strength reduction factor

The strength reduction factor for calculating the design capacities of structural members shall be taken from the table below, referenced from AS 1720.1 -2010.

Application of SmartLVL as a structural member						
Category 1	Category 2	Category 3				
Structural members for houses for which failure would be unlikely to affect an area greater than 25 m²; OR secondary members in structures other than houses	Primary structural members in structures other than houses; OR elements in houses for which failure would be likely to affect an area* greater than 25 m²					
Strength reduction factor Ø *						
0.95	0.90	0.80				
* AS 1720.1:2010 Table 2.1						

Duration of load factor

The duration of load factor k_1 for strength are defined within Table 2.3 and clause 1.2.4.1.1 of AS 1720.1.

The duration of load factors j_2 and j_3 for stiffness is defined within clause 1.2.4.1.2 of AS 1720.1

Moisture effects

When used in dry conditions where the moisture content remains below 15%, no modification for moisture content is required. Where SmartLVL is subjected to conditions, such that the average moisture content for a 12 month period with exceed 15%, the modification factors for strength k_4 and for stiffness $j_6\hspace{0.5mm}$ in the following table.

Duomonte	Equilibrium moisture content (EMC)				
Property	≤15%	15% to 25%	≥25%		
Bending and compression	k ₄ = 1	k ₄ = 1.45 - 0.03 <i>EMC</i>	k ₄ = 0.7		
Tension and shear	k ₄ = 1	k ₄ = 1.30 - 0.02 <i>EMC</i>	k ₄ = 10.8		
Modulus of elasticity	J ₆ = 1	j ₆ = 1.30 - 0.02 <i>EMC</i>	J ₆ = 0.8		

Temperature

The modification factor for temperature K_{6} is described in clause 2.4.3 of AS 1720.1

Length and position of bearing

The bearing area factor $\ensuremath{k_{7}}$ is defined within clause 8.4.5 of AS 1720.1

Load sharing

Because of the reduced variability of strength values of LVL compared to solid timber, the load sharing factors k_9 within clause 2.4.5 of AS 1720.1 do not apply and therefore k_9 = 1.0.

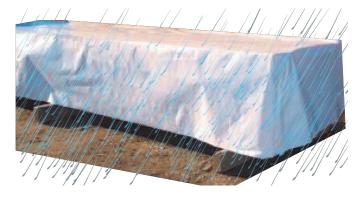
Stability

The stability factor k_{12} is defined within clause 3.2.4 and 3.3.3 of AS 1720.1 for dry timber except that the material constant (ρ_b or ρ_c) for beams and columns shall be calculated as per clause 8.4.7 of AS 1720.1.

Size factor

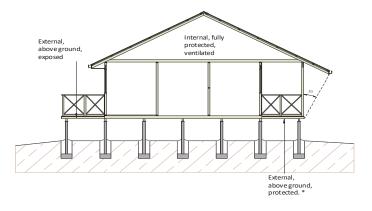
The characteristic values in bending and tension for wood products is affected by a size factor. For SmartLVL, multiply the published characteristic strength and tension values by the size factors shown in the table below.

Bending						
Beam orientation	Depth of section	Strength adjustment				
C-1	≤90 mm	Nil				
Edge	> 90 mm	(90/d) ^{0.167}				
Flat	> 45 mm	(45/t) ^{0.333}				
Tension						
	Largest cross sectional dimension	Strength adjustment				
	≤150 mm	Nil				
	> 150mm	(150/d) ^{0.167}				


Where:

d = depth of member on edget = thickness of member

Durability and exposure to moisture


Storage and handling of SmartLVL 12

- Store SmartLVL 12 flat on a hard, dry surface
- If surface isn't paved, the ground should be covered with a polythene film
- Keep covered with waterproof material that allows bundles to "breathe"
- Use bearers (bolsters) between the ground and the first bundle (4 metre max spacing)
- Use 100 x 50 timber flat between bundles at same spacing as holsters
- Take great care to rewrap remaining material after opening bundles
- LVL "grows" in thickness and depth when allowed to get wet....KEEP DRY!
- LVL with high MC has short term reduction in Characteristic Strengths KEEP DRY!
- Under NO circumstances is stored SmartLVL to be in contact with the ground.

SmartLVL 12 is manufactured from veneers which have a natural durability rating of class 4, which is the same rating as some Ash type Eucalypts and Radiata Pine. Untreated SmartLVL 12 should not be used where the equilibrium moisture content is likely to remain above 20% for an extended period.

Non-preservative treated, H2S and H2 preservative treated SmartLVL 12 is suitable as studs in the *internal, fully protected, ventilated* and the *external above ground, protected* zones of the structure as shown below. SmartLVL 12 is not suitable for *external above ground, exposed* or humid indoor conditions, such as swimming pool enclosures.

Definitions of exposure zones within a structure

Moisture effects on SmartLVL 12

SmartLVL 12, like all wood products, is hygroscopic, which means it has an affinity for water, and being a LVL, should be considered as a composite of many pieces of wood, each with different potential swelling. Moisture exposure will ultimately lead to dimensional change.

SmartLVL 12 is supplied with a short term construction water repellent however once framed into a structure may be exposed to the weather for a limited time (usually not greater than 3 months) without negative affect, BUT, it may exhibit some effects of this exposure such as swelling and checking (especially at cut ends), depending upon the weather conditions.

While the products will withstand normal exposure, excessive exposure during distribution, storage or construction may lead to dimensional changes that affect serviceability. These changes include cupping, bowing or expansion to dimensions to beyond the specified tolerance of the product in the "as-manufactured" condition.

Individual members of a laminated multi stud may exhibit some cupping if water becomes trapped between the laminates. This cupping produces more of a visual and possible fixity problem rather than being structurally significant. If not properly dried out, this moisture between laminated members may lead to decay.

As an organic material, mould and mildew may grow on untreated wood products if moisture is present. Prolonged periods of high moisture may also support the growth of wood decay fungi.

In critical applications where dimensional change due to moisture exposure is to be absolutely minimised it is recommended that spray on short term repellent (or bulk for airless spray guns) be used to seal any cut ends or notches etc.

The table below shows the moisture content of LVL as a function of humidity.

Moisture content of wood products % (1)					
Relative Humidity %	LVL MC				
10	1.2				
20	2.8				
30	4.6				
40	5.8				
50	7.0				
60	8.4				
70	11.1				
80	15.3				
90	19.4				

1. Approx. moisture content at 21°C

Dimensional change

SmartLVL 12 will shrink and swell in proportion to changes in moisture content between 0 and 28 % fibre saturation point.

The most significant moisture movement will occur across the grain (tangential and radial directions within a log). Longitudinal (movement in the grain direction) may be a factor depending upon the type of structure. Detailing of SmartLVL 12 to be used where moisture contents will cycle should allow for dimensional instability

The AVERAGE amount of dimensional change in a piece of SmartLVL 12 changes in moisture content can be APPROXIMATED by the following formula:

 $\Delta D = D_i S (MC_i - MC_f) / FSP$

Durability and exposure to moisture (Cont'd)

Where:

 ΔD = change in dimension

 D_i = Initial dimension

S = Shrinkage coefficient = approximately 6-8 %

 MC_i = Initial moisture content

 MC_f = final moisture content

FSP = fibre saturation point approximately 28%

HOWEVER, these dimensional effects are quite variable. Thickness swell in LVL is erratic along the length because of the densification of the lap joints during manufacture tends to "relieve" when saturated and the total swell in sections containing two (2) laps can be as much as 4 mm.

Change in characteristic strengths

Changes in moisture content in wood results in changes in mechanical properties, with higher properties at lower moisture contents. Estimates of the effect of moisture differentials on the properties of clear wood may be obtained by the following equation:

$$P = P_{12} \left(\frac{P_{12}}{P_g} \right)^{\left(\frac{12 - M}{M_p - 12} \right)}$$

Where:

P= Characteristic property at moisture content

P₁₂ = same Characteristic property at 12% moisture content

Pg = same Characteristic property for Green wood

M_p = Intersection moisture content = 24%

Characteristic Property		% Reduction in characteristic strength at % MC					
Characteristic Froperty	Characteristic Property		16	18	20	22	24
MOE (Stiffness)	Е	3.3	6.5	9.7	12.7	15.6	18.4
MOR (Bending)	F'b	8.4	16.1	23.1	29.6	35.5	40.9
Compression perpendicular to grain	f'p	9.9	18.9	27.0	34.2	40.8	46.7
Compression parallel to grain	f'c	11.0	20.7	29.4	37.2	44.1	50.2
Shear	f's	6.6	12.8	18.6	24.0	29.0	33.7

Supplementary information - wall frame fabricators

SmartLVL 12 will swell if it receives significant moisture ingress, and not all of that swell will be recovered once the LVL's moisture content has stabilised to the equilibrium moisture content typically found in an enclosed house frame in Australia.

For multiple studs, the swelling of individual studs, and the water trapped between touching elements may compound to cause lateral displacement in frames and around openings.

The effect of swell can be reduced by:

- 1. Where possible, ensure that the studs are orientated to have any raised veneer overlaps on the outer faces facing down to minimise the risk of collecting water
- 2. Keeping the completed frames covered before delivery to
- 3. Under sizing the noggings by 1-2 mm to allow for swelling.

Exact length would vary based upon climate, season and accuracy of cut

- 4. Nogging installation:
 - Leave end noggings out of wall frames to require the builders to add at the time of lining to reduce the effect of bowing on frame squareness

Alternatively

- Install a sliding end nogging at either the top or bottom of the frame that would be fixed onsite by the builder
- 4. Use the strength of SmartLVL 12 to:
 - i. Increase stud spacing where applicable
 - minimise the amount of multiple studs under concentrated loads
- If the design calls for trenched top and bottom plates, the trenches should be overcut by 4 mm to accommodate the swell of the stud
- Consider a solid timber bottom plate to minimise plate swelling.

Supplementary Information - Frame installers

- SmartLVL 12 frames should be enclosed as quickly as reasonable practical, or installed during extended periods of dry weather, to prevent swelling of the LVL sufficient to generate lateral displacement in frames and around openings
- Maintain good airflow around framing elements and do not allow water to pool on or around element
- 3. Ensure that floors can drain by creating drainage holes in the floor substrate
- Remove bottom plates in door openings as soon as possible to prevent longitudinal swelling in the bottom plate of the frames.
- 5. Install plasterboard lining 10 mm off the floor as per manufacturers' recommendations to allow for swell that may have occurred in the bottom plate.

Remedial measures for an excessively swelled frame

In the event that framing does get very wet, and construction is to continue immediately, the following remedial steps are recommended:

- 1. Enclose the frame as soon as possible
- Knock out noggings in the wall frames to keep the frame end studs straight. Replace noggings before lining once the framing moisture content is below 20%.
- 3. Do not line the frames until the moisture content is below 20%
- If planing is deemed necessary, planing of the top and bottom veneers is allowable to return the thickness of the LVL back to original
- It is NOT recommended to plane back the depth of the LVL as it will shrink back to an undersized member once equalised to internal moisture content conditions.

SmartLVL 12 Design/effective span

Normal structural analysis uses the centreline representation of the member. The term "span" can be defined in a number of ways and these are defined as follows:

Clear Span. This is the distance between the faces of any support. It is generally the one easiest to measure and read from the drawings.

Nominal span/centre-line span. This is the distance between the centre of the supports. This span is used to determine bending moments and deflections for continuous spanning members.

Design span/Effective span. This is the span used for single span members to determine the bending moment, the slenderness of bending members and the deflections. In NZS 3603 this is the dimension referred to as "L", and is defined below.

Design span/Effective span is the distance between -

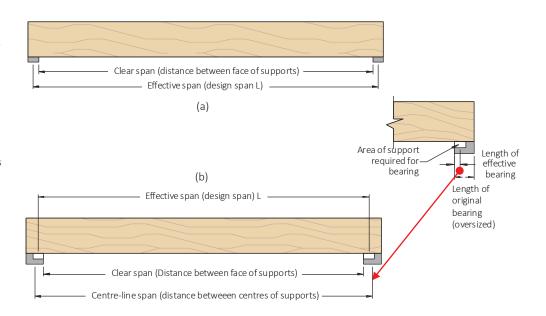

- The centre of the bearing at each end of a beam where the bearing lengths have NOT been conservatively sized
- The centre of notional bearing that have been sized appropriately, where the size of the bearing IS conservative.

Diagram (a) shows beam where bearings have been designed appropriately. The effective span is taken as the distance between the centre of each bearing area

Diagram (b) shows beam where bearings at each end have been oversized. (This is frequently the case for beams that bear onto brickwork or concrete walls where the thickness of the wall is in excess of the area required to give the beam bearing capacity).

To find the correct effective span:

- Calculate the minimum bearing required to carry the loads satisfactorily
- 2. Add minimum bearing length to "clear span" distance.

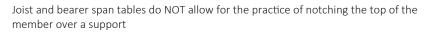
Continuous spans

For beams continuous over two (2) unequal spans, the design span and the "Resultant Span Description" depend upon the percentage difference between the two spans as shown below:

Note, for continuous spans, the Design Span is taken as the distance between the centre of the supports, as shown in **"Design Span"** on page 1 of the Design Guide.

Span Difference %	Effective span	Resultant span Description	
10% max	Main span	Continuous	
10 - 30%	1.1 x Main span	Continuous	
above 30%	Main span	Single	

span difference = (<u>main span - second span</u>) x 100 (main span + second span)


Rip sawing SmartLVL 12

One of the unique properties of Smart LVL is that it may be ripped through the depth to the smaller section sizes as those given in these span tables without affecting the basic strength properties. It is important that the new members are not cut undersized if the maximum spans in these tables are to be used.

The sawing through the thickness to produce sections of a lesser thickness may decrease the integrity of the SmartLVL and is therefore NOT recommended under any circumstances.

Multiple SmartLVL 12 section beams

Vertical laminations may be achieved by adopting the procedures described in clause 2.3 of AS1684, however these procedures should be considered as the minimum requirements to achieve the desired effect.

Experience with SmartLVL 12 beams indicates that this degree of fixing may not satisfactorily prevent cupping of individual components as a result of the ingress of moisture between laminates during construction.

The suggested methods of vertical lamination below provide a greater level of fixity between individual components, and with

the use of an elastomeric adhesive, also prevents moisture penetration between the laminates.

Maximum floor load width tables for multiple member laminations of SmartLVL 12:

- 1. Nail lamination
- 2. Type 17 screw lamination
- 3. Bolt lamination

are shown below

1. Nailing

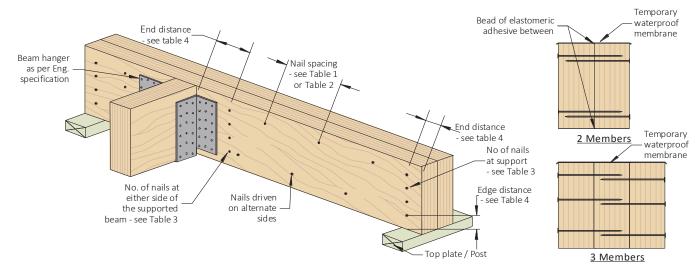


Table 1

Top (symmetrically) loaded beam					
Section width	Nail type	No of nail rows (both sides)	Nail spacing (mm)		
2/35	3.15 x 65	2 or 3*	300		
3/35 & 2/45	3.30 x 90	2 or 3*	300		
2/42	3.06 x 75	2 or 3*	200		
3/42, 3/45 & 2/58 3/58, 2/65 & 3/65	Nail lamination is not suitable, requires screws or bolts				

^{*} Beam depth ≥ 300 mm 3 rows of nails

Table 3

Table 2

Side (non-symmetrically) loaded beam								
Section width	Nail type	No of nail rows at 300mm ctrs (both sides)	Max. floor joist span supported by outer member (mm)*	No of nail rows at 300mm ctrs (both sides)	Max. floor joist span supported by outer member (mm)*			
2/35	3.15 x 65	2	2150	3	3250			
3/35	3.30 x 90	2	5100	3	7600			
2/45	3.30 x 90	2	2550	3	3800			
2/42	3.06 x 75	2	2300	3	3400			
3/42 & 3/45	3.30 x 90	2	2550	3	3800			
2/58 & 3/58	3.30 x 100	2	2500	3	3800			
2/65 & 3/65	3.30 x 100	2	1350	3	2050			

^{*} Floor loads G = 62 kg/m 2 , Q = 1.5 kPa

		Min. number of nails required			
	Beam depth (mm)	At support	At either side of supported beam		
	90 –150	3	3		
ĺ	160-300	5	6		

8

6

Table 4

> 300

Nail dia. (mm)	Min. edge distance (mm)	Min. end distance (mm)	Min. distance be- tween nails (across the grain) (mm)
3.06 & 3.15	20	70	40
3.30	20	75	45

2. Type 17 screws

Table 1

Side (non-symmetrically) and top loaded beam						
Section width	Type 17 screw size	No of screw rows (both sides)	Screw spacing (mm)	Max. floor joist span supported by outer member (mm)**		
2/35 & 3/35	10g x 65	2 or 3*	200	4500		
2/42 & 3/42	12g x 75	2 or 3*	200	5900		
2/45 & 3/45	12g x 90	2 or 3*	200	6400		
2/58 & 3/58	14g x 100	2 or 3*	200	7100		
2/65 & 3/65	14g x 125	2 or 3*	300	6000		

^{*} for beam depths ≥ 300 mm, use 3 rows of screws

Table 2

Type 17 screw size	Min. edge distance (mm)	Min. end distance (mm)	Min. distance between screws (across the grain) (mm)
10g	30	50	20
12g	35	60	25
14g	40	70	30

Table 3

Beam depth	Min. number of screws required			
(mm)	At support	At either side of supported beam		
90 –240	3	3		
> 240	4	4		

3. Bolts

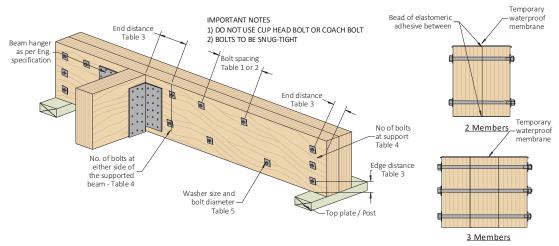


Table 1

Top (symmetrically) loaded beam - M12 Hex head bolt		
Beam depth ≤ 300 mm	Beam depth > 300 mm	
2 rows of bolts at 300 mm ctrs	3 rows of bolts at 300 mm ctrs	

Table 2

Side (Non symmetrically) loaded beam - M12 Hex head bolt				
Maximum floor joist span supported by the beam mm*				
2 rows at 600 mm ctrs 2 rows at 300 mm ctrs 3 rows at 600 mm ctrs				
7200 mm 12,000 mm 10,800 mm				

^{*} based upon floor loads of G: 1.25 kPa Q: 2.0 kPa

Table 3

Bolt size	Min. edge distance	Min. end distance	Min. distance between bolts (across grain)
M12 Hex head	60 mm	60 mm	60 mm

Table 4

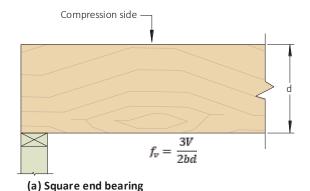
Beam depth	Min. number of bolts required		
(mm)	At support	At either side of supported beam	
90 –150	1	1	
160—240	2	2	
> 240	3	3	

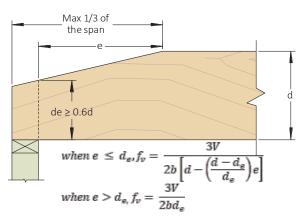
Table 5

Dalt diameter	Washer dimensions			
Bolt diameter (mm)	Thickness (mm)	Min. diameter of round washers (mm)	Min. side length of square washers (mm)	
M12	3	55	50	

^{**} Floor loads G = 1.25 kPa, Q = 2.0 kPa

On-site cutting, notching and drilling of SmartLVL 12

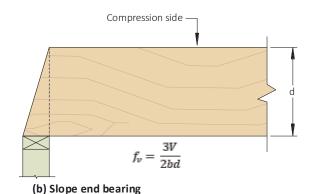

The cutting, notching and drilling details within Fig 4.1 of AS 1684 pre-date both the introduction of LVL and the common use of roof trusses, and therefore presents deemed-to-satisfy solutions based upon the solid section timber types/sizes and systems commonly used to frame a typical Class 1 and 10a building at that time.


Contemporary open plan building styles with larger spans and deeper/thinner beams made possible by the introduction of LVL combined with the near universal practice of building with roof trusses that typically load only to external walls have now rendered some of these deemed-to-satisfy solutions non- conservative, especially in cyclonic wind loadings.

It is for this reason that it is recommended that on-site cutting, notching and drilling of SmartLVL 12 be limited to the provisions shown below.

Further information about the effects of cutting and notching of timber elements can be found in Appendix E of AS 1720.1.

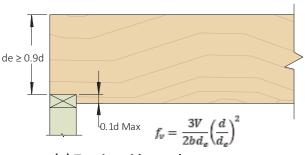
1. Notching



(c) Taper cut end bearing

Where LVL beams are notched at the ends for bearing over a support, the notch depth is recommended to not exceed 1/10 of the beam depth (Figure 1(e)).

Notching of LVL beams should be avoided whenever possible, especially on the tension side of a member. Tension-side notching of LVL beams is not recommended except at end bearings and then only under specific conditions. The notching of LVL beams on the tension side results in decreased strength caused by stress concentrations that develop around the notch and a reduction of the net cross section resisting the bending and shear forces. Such notches induce perpendicular-to-grain tensile stresses which, in conjunction with horizontal shear forces, can cause splitting along the grain, typically starting at the inside corner of the notch. Stress concentrations, due to notches, can be reduced by using a gradually tapered notch configuration in lieu of a square-cornered notch.


All onsite notches should be accurately cut. Avoid over cutting at the corners of the notch. Drilling a 16 mm φ pilot hole in a member at the interior corner of a notch as a stop point for the saw blade provides both a rounded corner and minimizes over cutting at the corner and reduces stress concentrations in these areas.

Max 1/3 of the span e0.4d

Max $de \ge 0.6d$ $when \ e \le d_{\varepsilon}, f_{v} = \frac{3V}{2b \left[d - \left(\frac{d - d_{\varepsilon}}{d_{\varepsilon}}\right)e\right]}$ $when \ e > d_{\varepsilon}, f_{v} = \frac{3V}{2bd_{\varepsilon}}$

(d) Compression-side notch

(e) Tension-side notch

 f_V = shear stress (MPa) d = depth of LVL beam (mm)

Figure 1

V = shear force at notch location (kN) $d_e =$ effective depth as shown (mm)

b = width of LVL beam (mm) e = length of notch as shown (mm)

On-site cutting, notching and drilling of SmartLVL 12 (cont'd)

For notches on the compression side, a less severe condition exists and equations for the analysis of the effects of these notches are also given in Figure 1. The equations given are empirical in nature and were developed for the conditions shown.

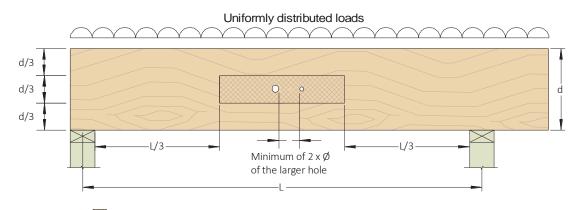
As the notching provisions given in this Note are limited to uniformly loaded simple span beams, the notches shown in Figure 1 occur in areas of high shear and lower moment. For this reason, the design equations given are shear equations.

When necessary to cut a small notch in the top of an LVL beam (in the compression side) to provide passage for small-diameter pipe or conduit, the cut should be made in an area of the beam stressed to less than 50% of the allowable bending stress. The net section in this area should be checked for shear and bending stresses to ensure adequate performance.

It should be recognized that the top of an LVL beam might not always be stressed in compression and the bottom of an LVL beam might not always be stressed in tension. For example, if the LVL beam is designed for wind uplift, the top of the LVL will be stressed in tension and the bottom of the LVL will be stressed in compression.

In this case, the recommendations given above should be applied

accordingly. Furthermore, when evaluating the effect of notching, the shear force within a distance from supports equal to the beam depth should not be neglected, as typically permitted by the design of rectangular wood members in accordance with the AS 1720.1.


Horizontal Holes

Like notches, holes in an LVL beam reduce the net section of the beam at the hole location and introduce stress concentrations. This causes a reduction in the beam capacity. For this reason, horizontal holes in LVL are limited in size and location to maintain the structural integrity of the beam. Figure 2 shows the zones of a uniformly loaded beam in simple or multiple spans, where the onsite drilling of holes may be considered. The requirements given

consider the effect of the horizontal hole on the shear and moment capacities of an LVL beam, and may be applied to multiple-piece built-up LVL beams.

Where larger horizontal holes than those specified in this document cannot be avoided in design, in some circumstances larger penetrations may be specifically designed by a structural engineer experienced in timber engineering.

Figure 2
Permissible horizontal round hole locations for LVL beams under uniform loads

Zone where horizontal holes are permitted for the passage of wires, conduits etc.

Beam depth (mm) Hole Ø (mm)

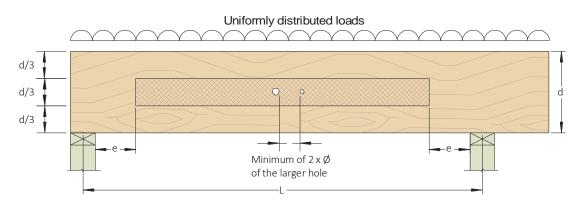
90 20

150 30

200 40

> 200 Max 50 (unless specifically designed by an engineer)

- a) Maximum of three (3) holes per span
- b) Holes should not be cut in cantilevers


A 25 mm \emptyset or smaller hole may be cut at the middle % of the beam depth anywhere along the span, except for the area that is within 150 mm of clear distance between the face of the support and the nearest edge of the hole (see Figure 3 on next page), provided the following conditions are all met:

- 1. The beam is at least 190 mm in depth
- 2. The beam is subject to uniform loads only

- 3. The span-to-depth ratio (I/d) is at least 11 $\,$
- 4. The maximum number of holes for each span is limited to three
- 5. The horizontal spacing must be a minimum of two diameters clear distance between adjacent holes based on the diameter of the larger hole
- 6. The hole must not be cut in cantilevers.

On-site cutting, notching and drilling of SmartLVL 12 (cont'd)

Figure 3 Zones where a 25 mm or smaller diameter horizontal holes are permitted in a uniformly loaded LVL beam of depth \geq 190 mm

- Zone where a maximum of 25 mm Ø holes are permitted for the passage of wires, conduits etc.
- a) Maximum of three (3) holes per span
 - b) No holes permitted in cantilever
 - e = 150 mm where $L/d \ge 11$, or L/6 where L/d < 11

Beam depth (mm)	Span when L/d = 11 (mm)
200	2200
240	2640
300	3300
360	3960
400	4400
450	4950
525	5775
600	6600

The L/d of 11, is the span to depth ratio that segments the expected failure modes between shear and bending. When L/d < 11, the span is short, and it is expected that shear strength rather than bending will govern.

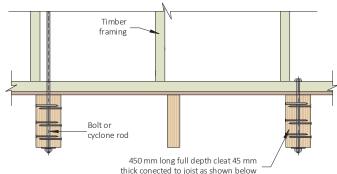
Onsite-drilled horizontal holes should be used for access only and should not be used as attachment

points for brackets or other load bearing hardware unless specifically designed as such by an engineer. Examples of access holes include those used for the passage of wires, electrical conduit, small-diameter sprinkler pipes, fibre-optic cables and other small, lightweight materials.

For LVL beams that have been over-sized, the guidelines given above may be relaxed based on an engineering analysis. When holes are required to be drilled outside the allowable zones, an engineering analysis should be conducted and approved by a structural engineer experienced in timber engineering.

Regardless of the hole location, holes drilled horizontally through a member should be positioned and sized with the understanding that the beam will deflect (creep) more over a period of time under in-service loading conditions. This deflection could overstress supported equipment or piping unless properly considered.

Vertical Holes


Whenever possible, avoid drilling vertical holes through LVL beams unless the beam width is at least 58 mm. For SmartLVL elements ≤ 58 mm thick, a 450 mm long cleat should be added as shown below, to avoid drilling vertical hole through thinner member.

Use a drill guide to minimize "wandering" of the bit to ensure a true alignment of the hole through the depth of the beam. The vertical hole should be centred in the beam width.

As a rule of thumb, vertical holes drilled through the depth of an LVL beam cause a reduction in the capacity at that location directly proportional to the ratio of 1½ times the diameter of the hole to

the width of the beam. For example, a 12 mm hole drilled in a 58 mm wide LVL beam would reduce the beam capacity at that section by approximately $(12 \times 1.5)/58 = 31\%$

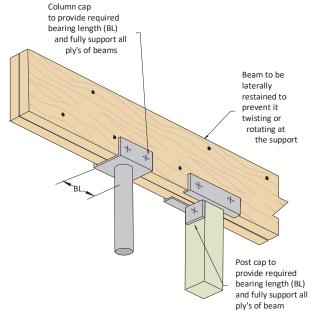
450 mm long reinforcement cleat

thick confected to joist as shown below		
Nails/screws/bolts	Design Capacity	
6 off 3.75 ø nails each side with min 40 mm penetration into adjacent joist/cleat		
6 off No 12 Type 17 screws with min 40 mm penetration into joist	20 kN Wind	
5 off No 14 Type 17 screws with min 45 mm into joist	uplift	
3 off M10 bolts		

Holes for support of suspended equipment

Heavy equipment or piping suspended from LVL beams should be attached such that the load is applied to the top of the beam to avoid inducing tension perpendicular-to-grain stresses.

Any horizontal holes required for support of significant weight, such as suspended heating and cooling units or main water lines, should be located above the neutral axis of the beam and in a zone stressed to less than 50% of the allowable bending stress. The beam capacity should be checked for all such loads to ensure proper performance.


Protection of onsite-cut notches and holes

Frequently, LVL beams are provided by the manufacturer with the ends sealed by a protective coating. This sealer is applied to the end grain of the LVL to retard the migration of moisture in and out of the beam ends during transit and job site storage. Onsite cutting a notch at the end of a beam can change the moisture absorption characteristics of LVL at the notch location. This can result in localized splitting at the corners of the notch. To minimize this possibility, all notches should be sealed with a water repellent sealer immediately after cutting. Sealing other onsite cuts as well as onsite-drilled holes is also recommended. These sealers can be applied with a brush, swab, roller or spray gun.

Further Information

Further information about the provision of larger holes, or advice about dealing with holes that have been cut into the LVL that are outside these guideline can be obtained by contacting the techsupport helpline on 1300 668 690 or at techsupport@tilling.com.au.

Steel and timber post fixing to SmartLVL

Fire resistance

The Fire Resistance Level (FRL) is the performance criteria for fire resistance, i.e. the grading periods (in minutes) for the following criteria as specified in the BCA:

- a. Structural adequacy: (the duration for which the elements can carry its designated load)
- Integrity: (the duration for which the element can maintain its integrity to prevent the spread of fire to/ from the compartment)

and

Insulation: (the duration for which the element is insulating the adjacent space from excessive temperature rise)

and is expressed in that order e.g. 30/30/30. The method for determining the structural component of the Fire Resistance Period for timber (including LVL and Glulam) is described in AS /NZS 1720.4 - 2019 Timber Structures Part 4: Fire resistance of timber elements.

$$c = 0.4 + \left(\frac{280}{\delta}\right)^2$$
 Equation 2.5.2

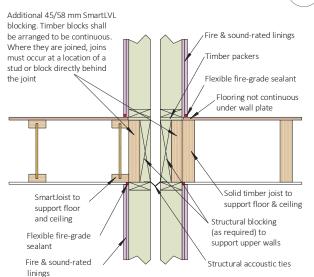
where:

c = notional charring rate, in mm per minute $d = timber density of SmartLVL 12 - \sim 600 kg/m³$

The effective depth of charring (d_c) after a period of time (t) shall be calculated in accordance with Clause 2.6.1 for surfaces exposed to fire and in accordance with Clause 2.6.2 for surfaces behind fire-resistant protective insulation.

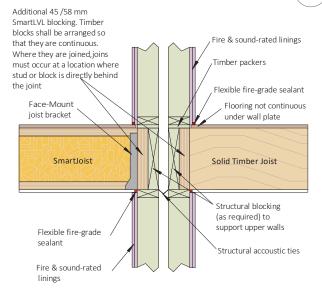
. The examples detailed below contain generic fire detailing principles related to a non-rated floor abutting a rated wall where separation walls require a FRL not less than 60/60/60, commonly found in class 1a applications.

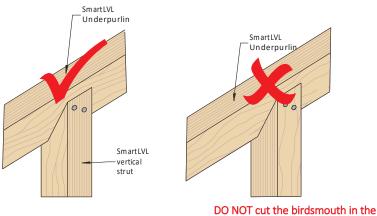
They have been included only to demonstrate that the type of joists within the non-rated floor do not effect the FRL of the rated wall junction, provided the wall is correctly detailed.


It is mandatory that those designing fire separation walls seek out and specify the latest relevant details either from a Fire Engineer, WoodSolutions® Technical Design Guides available at www.woodsolutions.com.au and Regulatory Authorities.

If using a tested and certified proprietary system, that system must be followed without variation.

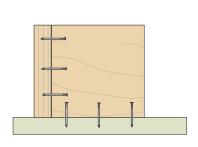
Further information about using SmartFrame product in fire rated applications can be obtained by contacting the Techsupport Helpline on 1300 668 690.


Floor joists parallel to the wall

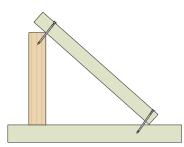


Floor joists perpendicular to the wall

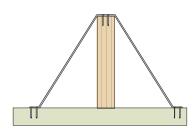
Roof construction detailing


Underpurlin

Rafter


Vertical SmartLVL 12 roof struts direction of the SmartLVL veneers

Rafter underpurlin fixing

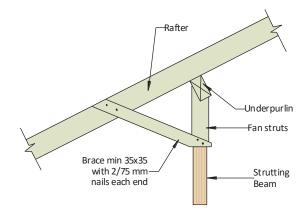

Lateral restraint of Hanging, Counter, Strutting, Strutting/hanging beams, Strutting/counter beams

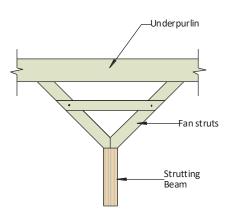
(a) Block skew nailed to beam and to support with 3/75 mm skew nails to each member.

(b) Min 35×32 mm tie nailed to top of beam and to support with 2/75 mm nails at each end.

Rafters are NOT to be skew nailed to the underpurlin

with the nails parallel to the direction of the veneers


Nail fixing to AS 1684, skewed through rafter into


underpurlin ACROSS the plane of the veneers

(c) Galvanised strap nailed to support and top of beam with $2/30 \times 2.8 \varphi$ mm nails each end and to beam.

Notes:

- 1. Method used depends upon whether ceiling joists are perpendicular or parallel to the beam
- 2. Methods given in (b) and (c) are particularly suitable for restraining strutting beams and strutting/hanging beams at the intermediate points where the beams are supported, as they also permit these beams to be supported up clear of the ceiling joists by packing under at their supports.

Chemical resistance

SmartLVL (wood in general) has a definite advantage over steel members when exposed to corrosive environments. Timber and wood products are able to withstand mild acid conditions and are more resistant to degradation.

The behaviour of SmartLVL in chemical environments depends upon a number of factors, including PH and temperature. Wood essentially responds by either swelling (Category S), similar to moisture response, or by chemical degradation (Category D). Damage due to swelling is essentially reversible, but chemical degradation results in breakdown of the wood structure and is non-reversible.

Category S agents include alcohol and other polar agents.

These agents swell dry wood causing a strength (and stiffness) loss proportional to the swelling.

Category D agents include acids, alkalis and salts and result in a loss of strength and stiffness directly related to the loss of member cross-section. The table below provides a rough guide to performance of SmartLVL in chemical environments.

The effect of chemicals on wood will generally be worsened by

Chemical resistance (cont'd)

increased exposure time, temperature, extremes of pH and chemical concentration.

Wood generally offers considerably less resistance to alkalis than acids. Softwoods (includes SmartLVL) generally have better re-

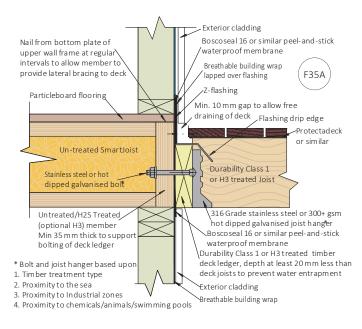
sistance to acids than hardwoods.

Where there is the possibility of chemical attack on SmartLVL 12 members, designers should seek expert advice.

Agent category	Chemical agent	Mode of attack	Damage - reversible or permanent	Severity - (loss of strength and/or stiffness)
Neutral	Non-polar liquids such as petroleum hydro- carbons	None	Negligible	Negligible
S (swelling)	Alcohol and other polar solvents	Swelling	Reversible	Proportional to volumetric swelling
D (degrading)	Inorganic acids	Hydrolysis of cellulose	Permanent	Slight to moderate
D	Organic acids such as: Formic, acetic, propionic and lactic acid	Hydrolysis of cellulose	Permanent	Slight (pH 3-6)
D	Alkalis such as: sodium, calcium and magnesium hydroxide	De-lignification of wood and dissolving of hemicellulose	Permanent	Moderate (pH > 9.5) Severe (pH > 11)
D	Salts (considered as weak acids)	Hydrolysis of cellulose	Permanent	Slight

Table reference Williamson T.G. 2002 APA Engineered Wood Handbook

Deck ledger attachments


As with window and door installations in walls, paying careful attention to flashing details for decks attached to the house exterior is critical to avoid potential rot and mould of inner non treated wall frames and floor systems. Water from direct rainfall, splash from decks and runoff from incorrectly sloped deck surfaces can leak into the exterior wall where the deck attaches to the house.

Several conditions contribute to the water problem:

 The ledger board is simply attached to the house with numerous lag screws or other hardware that penetrate the wall's cladding and drainage plane, but no flashing has been installed to protect these areas

- Water is often trapped behind the ledger board
- Upward splashing of rain from the deck adds significant wetting to the cladding, and inadequate flashing results in wetting and rot in the wall's framing and other internal elements.
- Integrating the attachment of the ledger board with the drainage plane behind the wall's cladding and adding proper flashing will maintain the integrity of the drainage plane and channel water away from the wall's surface.

Example flashing of deck ledger connection to un-treated house frame

Design of wall studs to AS 1684 (Wall height from 3.0 - 3.6 m)

Background

Figure 1.1 and Clause 1.6.6 in AS 1684 Parts 2 and 3 mandates a maximum external wall height (floor to ceiling) of 3000 mm. (measured at common external walls, not gable of skillion ends). The corresponding deemed-to-satisfy (DTS) data and tables within the standard is based upon this maximum wall height, especially in the areas of:

- 1. Racking forces Clause 8.3.4 Total racking force is a function of area of elevation and racking pressures (the maximum wall height assumed to generate the pressures given in Tables 8.1 to 8.5 was 2700 mm even though it was permitted to be used for walls up to 3000 mm high). The pressures in Tables 8.1 to 8.5 are a function of the building geometry such as height to width ratio. Increasing the assumed external wall heights from 2700 mm to 3600 mm increased a significant percentage of the pressures on the projected areas of elevation.
- 2. **Bottom plate fixing Clause 8.3.6.10** Fixing of bottom of bracing walls requires consideration of the uplift at ends of bracing walls which in turn is a function of wall height. Table 8.23 (Table 8.24 in Part 3) therefore requires extension to cater for walls up to 4800 mm high.
- 3. **Net wind uplift pressures Clause 9.6.4** The net wind uplift pressures in Table 9.5 and the uplift forces in Tables 9.6 to 9.11 (Tables 9.6 to 9.10 in Part 3) may be influenced by the overturning forces on the building (see note to Table 9.5). The overturning forces are caused by a combination of both direct uplift and the lateral forces on the building. The taller the building, then the higher the overturning forces will be. The equivalent net uplift pressures are significantly higher for taller buildings (3600 mm high external walls).
- 4. Shear forces on exterior load bearing walls Clause 9.7.6 and Table 9.29. The values in Table 9.29 will need to be modified if the wall heights are modified
- 5. Bracing force value in Appendix G The bracing force values given in the Tables in this Appendix are only applicable to wall heights of 2700 mm. It is not appropriate to apply a simple % increase to cater for wall heights from 3000 mm to 3600 mm, therefore this Appendix should not be used for walls higher than 3000mm.

The overriding 3000 mm height limitation was included in AS 1684 to ensure that other design assumptions and requirements listed above in the Code would not be compromised.

Designing external wall heights from 3.0 to 3.6 m

The AS 1684 User Guide No 4 June 2012 was developed to provide a recommended Procedure for Wall Heights 3.0 to 3.6 m and is available from WoodSolutions.com.au. The recommendations for wall heights from 3.0 to 3.6 m in this Design Guide listed below are reproduced from that document, and therefore Tilling Timber Pty Ltd will not accept responsibility for the values contained therein.

1. Member Sizes

The size of studs, plates and lintels in external load-bearing walls can be determined directly from the relevant span tables in this document.

2. Racking Force

The total racking force shall be determined from Clause 8.3.4 but for external wall heights above 3000 mm up to 3600 mm, the lateral pressures determined from Tables 8.2 to 8.5 for roof pitches 50 to 200 shall be increased by 10%.

Note:- Pressures for other roof pitches or for vertical surface elevations (Table 8.1) do not require to be increased.

Determine the capacity of bracing walls greater than 2700 mm high from Table 8.19.

3. Fixing of Bottom of Bracing Walls

Include the following additional lines in Table 8.23 of Part 2 and Table 8.24 of Part 3:-

Wall				Uplift	force	at en	ds of	bracir	ng wal	lls (kN)		
Height		For modified bracing wall capacity rated at (kN/m)											
(mm)	0.5	5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 8.0											
3300	1.7	3.3	5.0	6.6	8.3	9.9	12	13	15	17	18	20	26
3600	1.8	3.6	5.4	7.2	9.0	11	13	14	16	18	20	22	29
3900	2.0	3.9	5.9	7.8	9.8	12	14	16	18	20	21	23	31
4200	2.1	4.2	6.3	8.4	11	13	15	17	19	21	23	25	34
4800	2.4	4.8	7.2	9.6	12	14	17	19	23	24	26	29	38

4. Wind Uplift Forces

In Clause 9.6.4, the wind uplift forces calculated by multiplying the net uplift pressure by the area of roof contributing to tie-down, shall be determined from Table 9.5 using the following net uplift pressures for the tie-down positions described:-

Part 2 - Non cyclonic

			Net u	ıplift pr	essure	(kPa)					
		Wind classification									
Connection/tie-down position	N1		N2		N3		N4				
position	Sheet Roof	Tile roof	Sheet roof	Tile roof	Sheet roof	Tile roof	Sheet roof	Tile roof			
Single or upper storey floor frame to supports	-	-	0.25	-	1.2	0.8	2.4	2.0			
Lower storey wall frame to floor Frame or Slab	-	-	0.25	-	1.2	0.8	2.4	2.0			
Lower storey floor frame to supports	-	-	-	-	-	-	1.4	1.0			

Part 3 - Cyclonic

		Net uplift pressure (kPa)									
Connection his down			Wind clas	sification							
Connection/tie-down position	С	1	C	2	С3						
postacii	Sheet roof	Tile roof	Sheet roof	Tile roof	Sheet roof	Tile roof					
Single or upper storey floor frame to supports	1.5	1.3	2.93	2.7	4.3	4.3					
Lower storey wall frame to floor frame or slab	1.5	1.3	2.93	2.7	4.3	4.3					
Lower storey floor frame to supports	0.6	0.5	2.0	1.8	4.3	4.3					

Note: The uplift forces given in Tables 9.6 to 9.10 shall not be uses for determination of uplift forces, however they could be recalculated using the net uplift pressure given above

5. Shear forces on External Non-loadbearing Walls

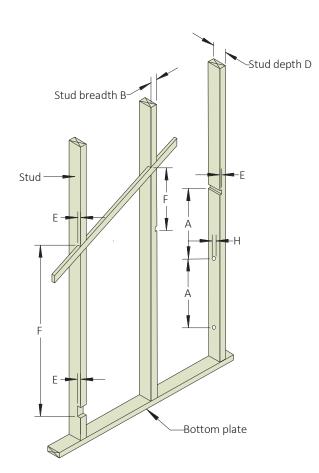
Table 9.29 needs to have additional notes added to cater for 3300 mm and 3600 mm high walls:-

NOTES:

For 3300 mm high external walls, multiply the above values by 1.3. $\,$

For 3600 mm high external walls, multiply the above by 1.3

6. Appendix G


Appendix G shall **NOT** be used to determine racking forces for wall heights from 3000 to 3600 mm.

Notching and holes in SmartLVL 12 studs

The following diagram and tables are reproduced from AS 1684.2: 2021, and focused where necessary to only deal with studs.

The paragraph (b) below was introduced into the 2021 edition of AS 1684 to allow for larger holes/notches in non loadbearing

walls, and given the higher characteristic strength values of SmartLVL 12 over solid sawn timber studs provides a conservative solution

Complete	Description	Limits	
Symbol	Description	Notched	Not notched
А	Distance between holes and/ or notches in stud breadth	Min. 3D	Min. 3D
Н	Hole diameter (studs and plates)	Max. 25 mm (wide face only)	Max. 25 mm (wide face only)
С	Notch into stud breadth	Max. 10 mm	Max. 10 mm
E	Notch into stud depth	Max. 20 mm (for diagonal cut in bracing only) (see Notes 1 and 2)	Not permitted (see Note 1)
F	Distance between notches in stud depth	Min. 12B	N/A

NOTES

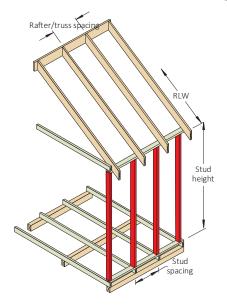
- A horizontal line of notches up to 25 mm may be provided for the installation of baths
- 2. Except as permitted for diagonal cut in bracing, notches up to 20 mm may occur in every fifth individual stud.
- 3. For additional jamb stud requirements, see Figures 6.5, 6.9(A) and 6.9(B) of AS 1684.2:2021
- 4. Top and bottom plates in internal non-loadbearing and non-bracing walls may be discontinuous up to 60 mm (cut or drilled) to permit installation of services provided that, at the discontinuity, the plates are trimmed or otherwise reinforced either side of the discontinuity to maintain the lateral and longitudinal integrity of the wall.

(a) General (external walls, loadbearing walls and braced sections of internal non-loadbearing walls)

The maximum size and spacing of cuts, holes, notches and similar section reductions in studs shall be in accordance with the above diagram.

- Holes in studs and plates shall be located within the middle half of the depth and breadth of the member, respectively.
- ii) A longitudinal groove up to 18 mm wide × 10 mm deep may be machined into the middle third depth of a stud to accept full-length anchor rods. Where the groove exceeds this dimension, the remaining net breadth and depth of the stud shall be not less than the minimum size required.
- iii) Studs may be designed as notched or not-notched. For common studs, the maximum notch depth for single or upper storey or lower storey construction shall be 20 mm.
- iv) Jamb studs in external walls and other loadbearing walls shall not be notched within the middle half of their height or within the height of the opening. A notch up to a maximum of 20 mm in depth is permissible outside this region at the top and/or the bottom of the stud.

(b) Internal non-loadbearing walls (excluding sections of wall that have diagonal or structural sheet bracing installed)


The general requirements for internal non-loadbearing walls (excluding sections of wall that have diagonal or structural sheet bracing installed) shall be as specified in Item (a) above. The following additional allowances are permitted:

- i) Holes in plates and noggings of diameter up to 52 mm may be located on the centre-line of the wide face provided they are spaced a minimum of 1 800 mm apart and are not located adjacent to significant timber defects.
- ii) A single hole in a stud of diameter up to 52 mm may be located on the centre-line of the wide face provided they are not located adjacent to significant timber defects and can only occur not closer than in every fourth stud.
- iii) A single notch in a stud up to 50 % of the stud depth may be used. The notch can only occur not closer than in every fourth stud.

Index of span tables

Common stud—Single upper storey wall– un-notched	N1-N4		
		450 ctrs	17
		600 ctrs	18
Common stud—Single upper storey wall— un-notched	C1-C3		
		450 ctrs	19
		600 ctrs	20
Common stud—Single upper storey wall—notched	N1-N4		
		450 ctrs	21
		600 ctrs	22
Common stud—Single upper storey wall– notched	C1-C3		
		450 ctrs	23
		600 ctrs	24
Jamb studs			
		N1-N4	25
		C1-C3	26
Wall studs—lower storey load bearing walls—un notched			
		N1-N4	27
		C1-C3	28
Studs lower storey of 2 storey walls - Supporting floor load	ds only		29
Floor joists supporting floor loads only			30
Floor bearers supporting joists loads only			30
Floor bearers supporting joists, walls and roof loads			31
Single span lintels in single/upper storey walls	N1-C3		32
Single span lower storey lintels	N1-C3		33
Underpurlins (WA)	N1-C3		34
Roof struts (WA)	N1-C3		35

Common stud at 450 mm ctrs - single/upper storey walls - un-notched AS 4055 Classification N1 - N4

EXAMPLE:

Sheet roof

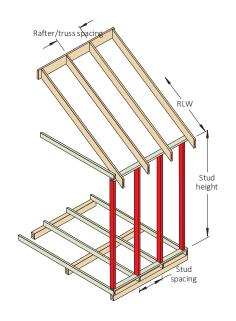
Stud spacing = 450 mm

Rafter truss spacing = 600 mm

Stud height = 2700 mm

Roof load width = 6500 mm

Enter sheet roof column, 600 mm in rafter/truss spacing column, read down to a span roof load width of 6500 mm in a 2700 mm stud height.


ADOPT:

Red alext - 70 x 35

Rafter/	truss spacing (mm)	450	600	900	1200	450	600	900	1200		
Size DxB	Chird balaba (mana)		N	laximum re	commende	ed roof load	width (mr	n)			
(mm)	Stud height (mm)		Shee	t roof			Tile	Tile roof			
			Stud sp	acing 450	mm						
	2400	7500	7500	7500	5500	7500	7500	5500	4500		
70x35	2700	7500	7500	4500	3500	6500	5000	3500	2500		
	3000	5500	4000	2500	2000	3500	3000	2000	1500		
	2700	7500	7500	7500	7500	7500	7500	7500	7500		
90x35	3000	7500	7500	7500	6500	7500	7500	6500	5000		
	3600	7500	5500	3500	2500	5500	4500	2500	1500		
140x35	3600	7500	7500	7500	7500	7500	7500	7500	7500		
	2700	7500	7500	7500	7500	7500	7500	7500	7500		
2/70x35	3000	7500	7500	7500	7500	7500	7500	6500	5000		
	3600	7500	6500	4500	3500	6500	4500	3500	2500		
2/90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500		
2/90X35	3600	7500	7500	7500	7500	7500	7500	7500	6500		
	2400	7500	7500	7500	7500	7500	7500	7500	6500		
70x45	2700	7500	7500	7500	5500	7500	7500	5500	4000		
70X45	3000	7500	6500	4500	3500	6500	5000	3500	2500		
	3600	3500	2500	1500	NS	2500	1500	NS	NS		
	2700	7500	7500	7500	7500	7500	7500	7500	7500		
90x45	3000	7500	7500	7500	7500	7500	7500	7500	7000		
	3600	7500	7500	6500	4500	7500	6500	4500	3500		
	2700	7500	7500	7500	7500	7500	7500	7500	7500		
2/70x45	3000	7500	7500	7500	7500	7500	7500	7500	6500		
	3600	7500	7500	5500	4500	6500	6500	3500	2500		
2/90x45	3600	7500	7500	7500	7500	7500	7500	7500	7500		

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 kg/m^2
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud not notched
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering

Common Stud at 600 mm ctrs - single/upper storey walls - un-notched AS 4055 Classification N1 - N4

EXAMPLE:

Sheet roof

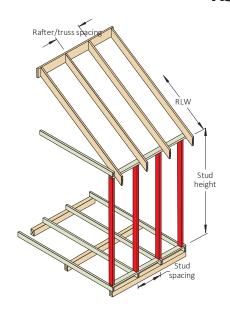
Stud spacing = 600 mm

Rafter truss spacing = 600 mm

Stud height = 2700 mm

Roof load width = 6500 mm

Enter sheet roof column, 600 mm in rafter/truss spacing column, read down to a span roof load width of 6500 mm in a 2700 mm stud height.


ADOPT:

Red Alext - 90x35 or 70 x 45

Rafter/	truss spacing (mm)	450	600	900	1200	450	600	900	1200
Size DxB	Stud height (mm)		V	laximum re	commende	ed roof load	l width (mr	n)	
(mm)	Stud Height (Hill)		Shee	t roof			Tile	roof	
			Stud sp	acing 600	mm				
	2400	7500	7500	6500	4500	6500	6500	4500	3500
70x35	2700	4500	4500	3000	2500	3500	3500	2000	1500
	3000	1500	1500	NS	NS	1500	1500	NS	NS
	2400	7500	7500	7500	7500	7500	7500	7500	7500
0025	2700	7500	7500	7500	7500	7500	7500	7500	6500
90x35	3000	7500	7500	7500	5500	7500	7500	5500	4000
	3600	3500	3500	2500	1500	2500	2500	1500	NS
140x35	3600	7500	7500	7500	7500	7500	7500	7500	7500
	2400	7500	7500	7500	7500	7500	7500	7500	7500
2/70x35	2700	7500	7500	7500	7500	7500	7500	7500	6500
2//0x33	3000	7500	7500	7500	6500	7500	7500	6000	4500
	3600	5500	5500	3500	2500	3500	3500	2500	1500
2/90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500
2/90855	3600	7500	7500	7500	7500	7500	7500	7500	5500
	2400	7500	7500	7500	7500	7500	7500	6500	5500
70x45	2700	7500	7500	5500	4500	6500	6500	4000	3000
	3000	4500	4500	3000	2500	3500	3500	2200	1800
	2700	7500	7500	7500	7500	7500	7500	7500	7500
90x45	3000	7500	7500	7500	7500	7500	7500	7500	6000
	3600	7500	7500	4500	3500	5500	5500	3500	2500
	2700	7500	7500	7500	7500	7500	7500	7500	7500
2/70x45	3000	7500	7500	7500	7500	7500	7500	7500	6500
	3600	7500	7500	5500	4500	6500	6500	3500	2500
2/90x45	3600	7500	7500	7500	7500	7500	7500	7500	7500

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 kg/m²
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud not notched
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering

Common Stud at 450 mm ctrs - single/upper storey walls - un-notched AS 4055 Classification C1 - C3

EXAMPLE:

Sheet roof

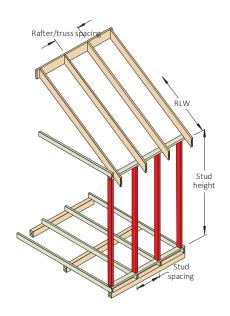
Stud spacing = 450 mm

Rafter truss spacing = 600 mm

Stud height = 2700 mm

Roof load width = 6300 mm

Enter sheet roof column, 600 mm in rafter/truss spacing column, read down to a span roof load width of 6300 mm in a 2700 mm stud height.


ADOPT:

Red alext - 90 x 35

Rafter/	truss spacing (mm)	450	600	900	1200	450	600	900	1200
Size DxB	,		N	laximum re	commende	ed roof load	l width (mr	n)	
(mm)	Stud Height (mm)			Roof			· ·	Roof	
				acing 450	mm				
70x35	2400	3500	2500	1500	NS	2500	2000	1500	NS
70,55	2400	7500	7500	7500	5500	7500	7500	6500	4500
90x35	2700	7500	6500	4500	3500	7500	5500	3500	2500
30,55	3000	4500	3500	2500	1500	3500	2500	2000	1500
	3000	7500	7500	7500	7500	7500	7500	7500	7500
140x35	3600	7500	7500	7500	6500	7500	7500	7500	5500
	2400	7500	7500	7500	6500	7500	7500	7500	5500
	2700	7500	7500	5500	4000	7500	6500	4500	3500
2/70x35	3000	6500	5000	3500	2500	5500	4000	2500	2200
	3600	1500	1500	NS	NS	1500	NS	NS	NS
	2700	7500	7500	7500	7500	7500	7500	7500	7500
2/90x35	3000	7500	7500	7500	7500	7500	7500	7500	6500
_,	3600	7500	7500	4500	3500	7500	5500	3500	2500
	2400	7500	5500	3500	2500	6500	4500	3000	2200
70x45	2700	3500	2500	1500	NS	2500	2000	1500	NS
	2400	7500	7500	7500	7500	7500	7500	7500	7500
	2700	7500	7500	7500	5500	7500	7500	6500	4500
90x45	3000	7500	6500	4500	3500	7500	5500	3500	3000
	3600	2500	1500	NS	NS	1500	1500	NS	NS
	2400	7500	7500	7500	7500	7500	7500	7500	7500
2/70x45	2700	7500	7500	7500	6500	7500	7500	6500	5500
	3000	7500	7500	5500	4000	7500	6500	4500	3500
	3600	4500	2500	1500	1500	3500	2500	1500	NS
2/90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500
	3600	7500	7500	7500	5500	7500	7500	5500	4500

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 kg/m²
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud not notched
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering.

Common Stud at 600 mm ctrs - single/upper storey walls - un-notched AS 4055 Classification C1 - C3

EXAMPLE:

Sheet roof

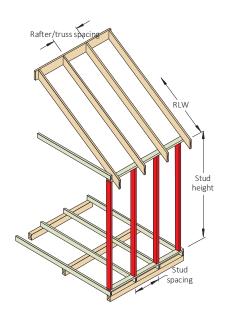
Stud spacing = 600 mm

Rafter truss spacing = 600 mm

Stud height = 2700 mm

Roof load width = 6300 mm

Enter sheet roof column, 600 mm in rafter/truss spacing column, read down to a span roof load width of 6300 mm in a 2700 mm stud height.


ADOPT:

Red alext - 2/70 x 35

Rafter/	truss spacing (mm)	450	600	900	1200	450	600	900	1200
Size DxB	Stud height (mm)		V	laximum re	commende	ed roof load	l width (mr	n)	
(mm)	Stud neight (mm)		Shee	t roof			Tile	roof	
			Stud sp	acing 600	mm				
00.25	2400	7500	7500	5500	4500	7500	7500	4500	3500
90x35	2700	3500	3500	2500	1500	2500	2500	1500	1500
140.25	3000	7500	7500	7500	7500	7500	7500	7500	7500
140x35	3600	7500	7500	6500	4500	7500	7500	5500	3500
	2400	7500	7500	7500	5500	7500	7500	5500	4500
2/70x35	2700	6500	6500	4000	3000	4500	4500	3500	2500
	3000	2500	2500	2000	1500	2500	2500	1500	NS
	2700	7500	7500	7500	7500	7500	7500	7500	7500
2/90x35	3000	7500	7500	7500	6500	7500	7500	7500	5500
	3600	4500	4500	3500	2500	3500	3500	2500	1500
70x45	2400	2500	2500	1500	1500	2000	2000	1500	NS
	2400	7500	7500	7500	7500	7500	7500	7500	6500
90x45	2700	7500	7500	5500	3500	6500	6500	4500	3500
	3000	3500	3500	2500	2000	3500	3500	2000	1500
	3000	7500	7500	7500	7500	7500	7500	7500	7500
140x45	3600	7500	7500	7500	7500	7500	7500	7500	6500
	2400	7500	7500	7500	7500	7500	7500	7500	6500
2/70 45	2700	7500	7500	6500	5000	7500	7500	5500	4500
2/70x45	3000	6500	6500	4000	3000	4500	4500	3500	2500
	3600	1500	1500	NS	NS	NS	NS	NS	NS
2/00 45	3000	7500	7500	7500	7500	7500	7500	7500	7500
2/90x45	3600	7500	7500	5500	4500	7500	7500	4500	3500

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 kg/m²
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud not notched
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering.

Common Stud at 450 mm ctrs - single/upper storey walls - 20 mm notched AS 4055 Classification N1 - N4

EXAMPLE:

Sheet roof

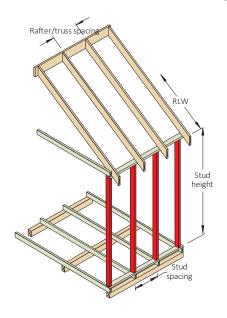
Stud spacing = 450 mm

Rafter truss spacing = 600 mm

Stud height = 2700 mm

Roof load width = 6300

Enter sheet roof column, 600 mm in rafter/truss spacing column, read down to a span roof load width of 6300 mm in a 2700 mm stud height.


ADOPT:

Red alect - 90x 35

Rafter/trus	s spacing (mm)	450	600	900	1200	450	600	900	1200
Size DxB (mm)	Stud height (mm)			Maximum re	commend	ed roof load v	vidth (mm)		
Size DXB (IIIIII)	Stud Height (Hill)		Sheet i	oof			Tile r	oof	
		1	Stud space	ing 450 mm					
70x35	2400	7500	7500	6500	4500	7500	7500	4500	3500
70X35	2700	7500	5500	3500	2500	5500	4000	2500	2000
	2400	7500	7500	7500	7500	7500	7500	7500	7500
90x35	2700	7500	7500	7500	7500	7500	7500	7500	6500
	3000	7500	7500	7500	5500	7500	7500	5500	4000
140x35	3600	7500	7500	7500	7500	7500	7500	7500	7500
	2400	7500	7500	7500	7500	7500	7500	7500	7500
2/70x35	2700	7500	7500	7500	7500	7500	7500	7500	5500
	3000	7500	7500	7500	5500	7500	7500	5500	4000
2/22 25	3000	7500	7500	7500	7500	7500	7500	7500	7500
2/90x35	3600	7500	7500	7500	7500	7500	7500	6500	4500
	2400	7500	7500	7500	7500	7500	7500	6500	5000
70x45	2700	7500	7500	5500	4500	7500	6500	4000	3000
	3000	6500	4500	3500	2500	4500	3500	2500	1800
	2700	7500	7500	7500	7500	7500	7500	7500	7500
90x45	3000	7500	7500	7500	7500	7500	7500	7500	5500
2/70 45	2700	7500	7500	7500	7500	7500	7500	7500	7500
2/70x45	3000	7500	7500	7500	7500	7500	7500	7500	5500
2/90x45	3600	7500	7500	7500	7500	7500	7500	7500	7500

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 ${\rm kg/m^2}$
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud notch 20 mm maximum
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering.

Common Stud at 600 mm ctrs - single/upper storey walls - 20 mm notched AS 4055 Classification N1 - N4

EXAMPLE:

Sheet roof

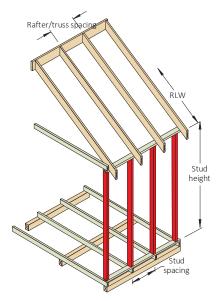
Stud spacing = 600 mm

Rafter truss spacing = 600 mm

Stud height = 2700 mm

Roof load width = 6300

Enter roof column, 600 mm in rafter/truss spacing column, read down to a span roof load width of 6300 mm in a 2700 mm stud height.


ADOPT:

Red alert - 90 x 35

Rafter/truss	spacing (mm)	450	600	900	1200	450	600	900	1200	
Size DxB (mm)	Stud height (mm)			Maximum re	ecommend	ed roof load v	vidth (mm)			
Size DXB (Milli)	Stud Height (Mill)		Sheet F	Roof			Tile Roof			
			Stud space	ing 600 mm						
70.25	2400	7500	7500	5500	4000	5500	5500	3500	2500	
70x35	2700	3500	3500	2500	2000	2500	2500	1500	1500	
	2400	7500	7500	7500	7500	7500	7500	7500	7500	
90x35	2700	7500	7500	7500	7500	7500	7500	7500	5500	
	3000	7500	7500	5500	4500	6500	6500	4000	3000	
140x35	3600	7500	7500	7500	7500	7500	7500	7500	7500	
	2400	7500	7500	7500	7500	7500	7500	7500	7500	
2/70x35	2700	7500	7500	7500	7500	7500	7500	7500	5500	
	3000	7500	7500	6500	4500	6500	6500	4500	3500	
2/90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	
2/90x35	3600	7500	7500	7500	5500	7500	7500	5500	4500	
70x45	2400	7500	7500	7500	6500	7500	7500	5500	4500	
70x45	2700	6500	6500	4500	3500	4500	4500	3500	2500	
90x45	2700	7500	7500	7500	7500	7500	7500	7500	7500	
90x45	3000	7500	7500	7500	6500	7500	7500	6500	4500	
140x45	3600	7500	7500	7500	7500	7500	7500	7500	7500	
190x45	3600	7500	7500	7500	7500	7500	7500	7500	7500	
2/7045	2700	7500	7500	7500	7500	7500	7500	7500	7500	
2/70x45	3000	7500	7500	7500	6500	7500	7500	6500	5000	
2/00:45	3000	7500	7500	7500	7500	7500	7500	7500	7500	
2/90x45	3600	7500	7500	7500	7500	7500	7500	7500	6500	

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 ${\rm kg/m^2}$
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud notch 20 mm maximum
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering.

Common Stud 450 ctrs - single/upper storey walls - 20 mm notched AS 4055 Classification C1 - C3

EXAMPLE:

Sheet roof

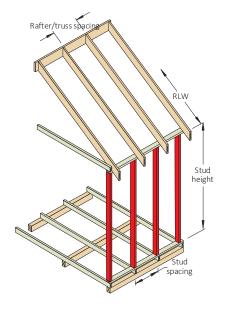
Stud spacing = 450 mm

Rafter truss spacing = 600 mm

Stud height = 2700 mm

Roof load width = 6500 mm

Enter sheet roof column, 600 mm in rafter/truss spacing column, read down to a span roof load width of 6500 mm in a 2700 mm stud height.


ADOPT:

Red alext - 90x35

Rafter/truss	s spacing (mm)	450	600	900	1200	450	600	900	1200	
Cina DuB (man)	Chird hainht (mm)			Maximum re	ecommend	ed roof load v	vidth (mm)			
Size DxB (mm)	Stud height (mm)		Sheet	roof			Tile roof			
			Stud space	ing 450 mm						
70x35	2400	3500	2500	1500	1500	2500	2500	1500	NS	
	2400	7500	7500	7500	5500	7500	7500	6500	4500	
90x35	2700	7500	6500	3500	3000	6500	4500	3500	2500	
	3000	3500	2500	1500	NS	2500	2000	1500	NS	
14025	3000	7500	7500	7500	7500	7500	7500	7500	7500	
140x35	3600	7500	7500	6500	4500	7500	7500	5500	3500	
190x35	3600	7500	7500	7500	7500	7500	7500	7500	7500	
	2400	7500	7500	7500	5500	7500	7500	6500	4500	
2/70x35	2700	7500	6500	4500	3500	7500	5500	3500	2500	
	3000	4500	3500	2500	1800	3500	3000	2000	1500	
	2700	7500	7500	7500	7500	7500	7500	7500	7500	
2/90x35	3000	7500	7500	7500	6500	7500	7500	7500	5500	
	3600	6500	4500	2500	1500	4500	3500	2500	1500	
	2400	7500	5500	3500	2500	5500	4500	2500	2000	
70x45	2700	2500	2000	1500	NS	2500	1500	NS	NS	
	2400	7500	7500	7500	7500	7500	7500	7500	6500	
90x45	2700	7500	7500	6500	4500	7500	7500	5500	4000	
	3000	7500	5500	3500	2500	5500	4500	3000	2000	
140.45	3000	7500	7500	7500	7500	7500	7500	7500	7500	
140x45	3600	7500	7500	7500	7500	7500	7500	7500	6500	
190x45	3600	7500	7500	7500	7500	7500	7500	7500	7500	
	2400	7500	7500	7500	7500	7500	7500	7500	6500	
2/70x45	2700	7500	7500	6500	5000	7500	7500	5500	4000	
	3000	7500	5500	4000	3000	6500	4500	3500	2500	
2/00:45	3000	7500	7500	7500	7500	7500	7500	7500	7500	
2/90x45	3600	7500	7500	5500	3500	7500	6500	4500	2500	

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 kg/m^2
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud notch 20 mm maximum
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering.

Common Stud at 600 mm ctrs - single/upper storey walls - 20 mm notched AS 4055 Classification C1 - C3

EXAMPLE:

Sheet roof

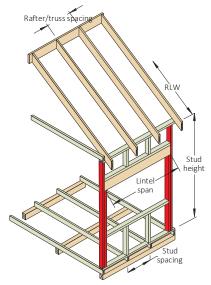
Stud spacing = 600 mm

Rafter truss spacing = 600 mm

Stud height = 2700 mm

Roof load width = 6500 mm

Enter sheet roof column, 600 mm in rafter/truss spacing column, read down to a span roof load width of 6500 mm in a 2700 mm stud height.


ADOPT:

Red alext - 2/90 x 35

Rafter/truss	s spacing (mm)	450	600	900	1200	450	600	900	1200					
				Maximum re	ecommend	ed roof load v	vidth (mm)							
Size DxB (mm)	Stud height (mm)		Sheet I	Roof			Tile R	oof						
			3500 2500 1500 2500 2500 1500 19 7500 3500 2500 3500 2500 3500 2500 2500 2500 2500 2500 7500											
90x35	2400	7500	7500	5500	4500	7500	7500	4500	3500					
90x35	2700	3500	3500	2500	1500	2500	2500	1500	1500					
140.25	3000	7500	7500	7500	7500	7500	7500	7500	7500					
140x35	3600	5500	5500	3500	2500	4500	4500	2500	1500					
190x35	3600	7500	7500	7500	7500	7500	7500	7500	7500					
	2400	7500	7500	6500	4500	7500	7500	5500	3500					
2/70x35	2700	4500	4500	3500	2500	3500	3500	2500	2000					
	3000	1500	1500	NS	NS	1500	1500	NS	NS					
2/00.25	2700	7500	7500	7500	7500	7500	7500	7500	7500					
2/90x35	3000	7500	7500	6500	5500	7500	7500	5500	4500					
70x45	2400	3500	3500	2000	1500	2500	2500	1500	NS					
	2400	7500	7500	7500	7500	7500	7500	7500	5500					
90x45	2700	7500	7500	4500	3500	5500	5500	3500	2500					
	3000	2500	2500	1500	1500	2500	2500	1500	NS					
1.4045	3000	7500	7500	7500	7500	7500	7500	7500	7500					
140x45	3600	7500	7500	7500	5500	7500	7500	6500	4500					
190x45	3600	7500	7500	7500	7500	7500	7500	7500	7500					
	2400	7500	7500	7500	7500	7500	7500	7500	5500					
2/70x45	2700	7500	7500	5500	4000	6500	6500	4500	3500					
	3000	4500	4500	2500	2000	3500	3500	2500	1500					
	2700	7500	7500	7500	7500	7500	7500	7500	7500					
2/90x45	3000	7500	7500	7500	7500	7500	7500	7500	6500					
	3600	5500	5500	3500	2500	4500	4500	4500 1500 7500 2500 7500 2500 NS 7500 5500 1500 7500 3500 1500 7500 6500 7500 4500 2500 7500	1500					

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 kg/m²
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud notch 20 mm maximum
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering.

Jamb Stud - single of upper load bearing walls AS 4055 Classification N1 - N4

EXAMPLE:

Sheet roof

Stud wall thickness = 90 mm

Width of opening = 1800 mm

Jamb stud height = 2700 mm

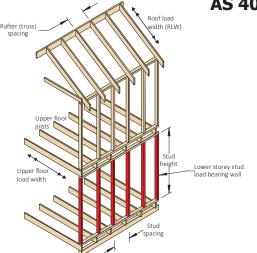
Roof load width = 4100 mm

Enter table at 4500 mm roof load width, sheet roof column, read down to a width of opening of 1800 mm in a 2700 mm stud height row with a roof mass of 40 kg/m^2 and a depth of 90 mm.

ADOPT:

Red Alext - 2/90 x 35

Roof load v	width (mm)	1500	3000	4500	6000	7500	1500	3000	4500	6000	7500					
Size DxB	Stud height			Sheet roof					Tile roof							
(mm)	(mm)		Width	of opening (n	nm)			Widt	Tile roof Width of opening (mm) 00							
	2400	2700	2400	2000	1700	1500	2700	2200	1700	1400	1200					
90x35	2700	1600	1600	1400	1300	1000	1600	1600	1300	1000	NS					
	3000	900	900	900	900	NS	900	900	900	NS	NS					
	2400	4500	4500	4500	4500	4500	4500	4500	4500	4500	4200					
140x35	2700	4500	4500	4500	4500	3900	4500	4500	4500	3900	3400					
140855	3000	4500	4500	3900	3400	3200	4500	4200	3600	3000	2700					
	3600	1800	1800	1800	1800	1800	1800	1800	1800	1800	900					
100,25	3000	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500					
190x35	3600	4500	4500	4500	4500	4500	4500	4500	4500	4500	3600					
2/70v25	2400	2200	2200	2100	1800	1500	2200	2200	1800	1500	1300					
2/70x35	2700	1400	1400	1400	1300	1200	1400	1400	1300	1200	900					
	2400	4500	4500	4500	3900	3300	4500	4500	4000	3300	2700					
2/90x35	2700	4000	4000	3600	3000	2500	4000	4000	3200	2500	2200					
	3000	2700	2700	2700	2200	2000	2700	2700	2400	2000	1600					
2/140.25	3000	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500					
2/140x35	3600	4500	4500	4500	4500	4500	4500	4500	4500	4500	3600					
2/190x35	3600	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500					
70x45	2400	1200	1200	1100	1000	NS	1200	1100	1100	NS	NS					
	2400	3600	3300	2700	2200	2000	3600	3000	2200	1800	1600					
90x45	2700	2200	2200	2000	1600	1500	2200	2100	1600	1500	1200					
	3000	1400	1400	1400	1200	1200	1400	1400	1200	1100	NS					
	2700	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500					
140x45	3000	4500	4500	4500	4500	4000	4500	4500	4500	3900	3600					
	3600	2700	2700	2700	2700	2700	2700	2700	2700	2700	1800					
190x45	3600	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500					
	2400	3200	3200	3000	2500	2000	3200	3200	2500	2000	1700					
2/70x45	2700	2100	2100	2100	1800	1500	2100	2100	2000	1500	1300					
	3000	1200	1200	1200	1100	1000	1200	1200								
	2400	4500	4500	4500	4500	4500	4500	4500								
2/05 :=	2700	4500	4500	4500	3900	3400	4500	4500	4200	3400	2700					
2/90x45	3000	3600	3600	3600	3200	2700	3600	3600	3300	2700	2200					
	3600	900	900	900	900	900	900	900	900	900	900					
2/140x45	3600	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500					
2/190x45	3600	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500					


Jamb Stud—Single of upper load bearing walls AS 4055 Classification C1 - C3

Roof load	width (mm)	1500	3000	4500	6000	7500	1500	3000	4500	6000	7500
Size DxB	Stud height			Sheet roof					Tile roof		
(mm)	(mm)		Width	of opening (m	nm)			Widt	th of opening ((mm)	
90x35	2400	900	900	NS	NS	NS	900	900	NS	NS	NS
	2400	4200	3600	3000	2500	2300	4200	3300	2700	2300	2200
140x35	2700	3300	2700	2300	2000	1800	3300	2500	2200	1800	1700
	3000	2400	2200	1800	1500	1500	2400	2000	1600	1500	1300
	2400	4500	4500	4500	4500	4300	4500	4500	4500	4500	4000
10025	2700	4500	4500	4500	4000	3600	4500	4500	4500	3800	3400
190x35	3000	4500	4500	3800	3400	3100	4500	4200	3600	3200	2900
	3600	2700	2700	1800	1800	1800	2700	2700	1800	1800	1800
	2400	2700	2700	2200	1800	1600	2700	2400	2000	1700	1400
2/90x35	2700	1600	1600	1600	1400	1200	1600	1600	1400	1300	1000
	3000	900	900	900	900	900	900	900	900	900	NS
	2400	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500
2/140.25	2700	4500	4500	4500	4500	4200	4500	4500	4500	4500	3900
2/140x35	3000	4500	4500	4500	3900	3400	4500	4500	4200	3600	3200
	3600	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
2/190x35	3600	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500
90x45	2400	1400	1400	1200	1000	NS	1400	1300	1100	900	NS
	2400	4500	4500	3900	3400	3000	4500	4500	3600	3200	2700
140.45	2700	4500	3600	3200	2700	2300	4200	3400	2900	2500	2200
140x45	3000	3200	2900	2500	2200	1800	3200	2700	2300	2000	1700
	3600	900	900	900	900	900	900	900	900	900	900
	2700	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500
190x45	3000	4500	4500	4500	4500	4000	4500	4500	4500	4300	3800
	3600	4500	3600	3600	2700	2700	4500	3600	2700	2700	2700
2/70x45	2400	1200	1200	1100	1100	900	1200	1200	1100	1000	NS
	2400	3600	3600	3000	2500	2000	3600	3600	2700	2200	1800
2/90x45	2700	2200	2200	2100	1800	1500	2200	2200	2000	1600	1500
	3000	1400	1400	1400	1300	1200	1400	1400	1400	1200	1100
	2700	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500
2/140x45	3000	4500	4500	4500	4500	4500	4500	4500	4500	4500	4200
	3600	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700
2/190x45	3600	4500	4500	4500	4500	4500	4500	4500	4500	4500	4500

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum wall mass of 37 kg/m^2
- 3. Multiple studs to be laminated as per AS 1684
- 4. Stud not notched
- 5. Maximum tension load in stud not to exceed 8.5 kN. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 6. If design stud length (not gable end walls) is > 3000 mm, as a minimum, the DTS provisions within AS 1684 for the racking force (clause 8.3.4), fixing of bottom plate (clause 8.3.6.10), uplift and shear force provisions (clause 9.7.6 and Table 9.2) need to be modified to allow for the extra wall height See page 4
- 7. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering.

Wall studs - lower storey load bearing walls - non notched

AS 4055 classification N1 - N4

EXAMPLE:

Sheet roof

Un - notched stud

Wall thickness = 90 mm

Stud spacing = 450 mm

Floor joist spacing = 600 mm

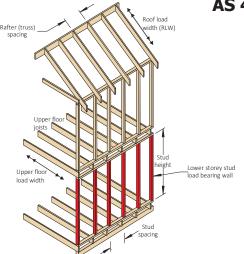
Stud height = 3000 mm

Floor load width = 4100 mm

Roof load width = 7500 mm

Enter table at 450 mm stud spacing column, 600 mm joist spacing column, 4800 floor load width column, read down to a roof load width of 7500 mm in a 3000 mm stud height row in a 90 mm stud

ADOPT:


Red alert- 90x35

					Sheet ro	of 40 kg/	m ²						
Stud sr	pacing (mm)			45		NB/				_60	00		
	t spacing (mm)		450			600			450			600	
	load width (mm)	1800	3600	4800	1800	3600	4800	1800	3600	4800	1800	3600	4800
Size DxB (mm)	Stud height (mm)		T	ı	ı		f load wid	th (RLW) (r			ı	ı	
	2400	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
70x35	2700	7500	7500	7500	7500	7500	7500	7500	7500	6500	7500	7500	6500
	3000	7500	7500	5500	6500	4500	3500	NS	NS	NS	NS	NS	NS
90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
140x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
190x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
70,45	2700	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
70x45	3000	7500	7500	7500	7500	7500	6500	7500	6500	5500	7500	6500	5500
90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
140x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
190x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
					Tiled ro	of 90 kg/r	n²						
	2400	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
70x35	2700	7500	7500	7500	7500	5500	4500	6500	4500	3500	6500	4500	3500
	3000	5500	4500	3500	4500	2500	1500	NS	NS	NS	NS	NS	NS
90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
140x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
190x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
·	2400	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
70x45	2700	7500	7500	7500	7500	7500	7500	7500	7500	6500	7500	7500	6500
	3000	7500	7500	6500	6500	4500	3500	5500	4500	3500	5500	4500	3500
90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
140x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
190x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500

- 1. D = member depth, B = member breadth, NS = not suitable.
- 2. Total upper floor mass of 40 kg/m², total wall mass of 37 kg/m², floor live load of 1.5 kPa
- 3. Stud not notched. Maximum tension load in stud not to exceed 8.5 kN.
- 4. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 5. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering

Wall studs - lower storey load bearing walls - non notched

AS 4055 classification C1 - C3

EXAMPLE:

Sheet roof

Un - notched stud

Wall depth 90 mm

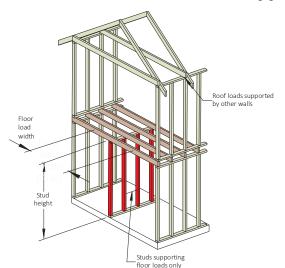
Stud spacing = 450 mm

Floor joist spacing = 600 mm

Stud height = 3000 mm

Floor load width = 4100 mm

Roof load width = 7500 mm


Enter table at 450 mm stud spacing column, 600 mm joist spacing column, 4800 mm floor load width, read down to a roof load width of 7500 mm in a 3000 mm stud height row in a 90 mm stud

ADOPT: Red alert 2/90 x 35

					Sheet roo	f 40 k=/	2						1
Churchana	scing (mm)				Sneet roo 50	40 Kg/M				- 60	00		
	acing (mm)			4:	50					ы	JU		
Floor joist s	spacing (mm)		450	I		600			450	I		600	
Upper floor lo	oad width (mm)	1800	3600	4800	1800	3600	4800	1800	3600	4800	1800	3600	4800
Size DxB (mm)	Stud height (mm)					Roo	f load wid	th (RLW) (ı	nm)				
7025	2400	7500	7500	7500	7500	6500	6500	5500	5500	4500	5500	5500	4500
70x35	2700	5500	4500	3500	3500	2500	2500	NS	NS	NS	NS	NS	NS
90x35	2700	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
90x55	3000	7500	7500	7500	7500	7500	6500	5500	4500	4500	5500	4500	4500
140x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
190x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x35	2700	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x55	3000	7500	7500	7500	7500	7500	7500	7500	6500	5500	7500	6500	5500
2/90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
70x45	2400	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
70,43	2700	7500	7500	7500	6500	5500	4500	4500	3500	3500	4500	3500	3500
90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
140x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
190x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
					Tile roof	90 kg/m ²	:						
70x35	2400	7500	7500	7500	6500	5500	4500	4500	3500	3500	4500	3500	3500
70x55	2700	4500	3500	2500	3000	2500	1500	NS	NS	NS	NS	NS	NS
90x35	2700	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
90x35	3000	7500	7500	7500	6500	5500	4500	4500	3500	3500	4500	3500	3500
140x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
190x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x35	2700	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x55	3000	7500	7500	7500	6500	6500	5500	5500	4500	4500	5500	4500	4500
2/90x35	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
70x45	2400	7500	7500	7500	7500	7500	7500	7500	7500	6500	7500	7500	6500
70x43	2700	7500	6500	5500	5500	4500	3500	3500	2500	2500	3500	2500	2500
00×45	2700	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	6500	7500	7500	6500
140x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
190x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/70x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500
2/90x45	3000	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500	7500

- 1. D = member depth, B = member breadth, NS = not suitable.
- 2. Total upper floor mass of 40 kg/m², total wall mass of 37 kg/m², floor live load of 1.5 kPa
- 3. Stud not notched. Maximum tension load in stud not to exceed 8.5 kN.
- 4. Where studs are nailed laminated the tension load in each stud shall not exceed 8.5 kN.
- 5. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering

Studs lower storey of two (2) storey walls Supporting floor loads only

EXAMPLE:

Un - notched stud

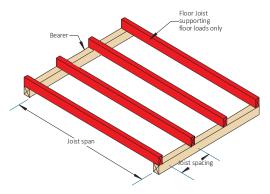
Stud spacing = 450 mm

Floor joist spacing = 600 mm

Stud height = 2700 mm

Floor load width = 4100 mm

Enter table at 450 mm stud spacing column, 600 mm joist spacing column, read down to a floor load width of 4100 mm in a 2700 mm stud height row.


ADOPT:

Red alext - 70 x 35

	or loads only				
			Un-notched		
Stud	spacing (mm)		450		600
Floor joi	ist spacing (mm)	450	600	450	600
Size DxB (mm)	Stud height (mm)		Maximum recommende	ed floor load width	(mm)
70x35	2400	8000	8000	8000	8000
70,55	2700	8000	6000	NS	NS
90x35	3000	8000	8000	8000	8000
140x35	3000	8000	8000	8000	8000
2/70x35	3000	8000	8000	8000	8000
2/90x35	3000	8000	8000	8000	8000
2/140x35	3000	8000	8000	8000	8000
70x45	2700	8000	8000	8000	8000
90x45	3000	8000	8000	8000	8000
140x45	3000	8000	8000	8000	8000
2/70x45	3000	8000	8000	8000	8000
2/90x45	3000	8000	8000	8000	8000
2/140x45	3000	8000	8000	8000	8000
			20 mm notch		
70x35	2400	6000	6000	6000	6000
2/70x35	3000	6000	6000	6000	6000
70x45	2700	6000	6000	6000	6000
2/70x45	3000	6000	6000	6000	6000
90x35	3000	6000	6000	6000	6000
2/90x35	3000	6000	6000	6000	6000
90x45	3000	6000	6000	6000	6000
2/90x45	3000	6000	6000	6000	6000
140x35	3000	6000	6000	6000	6000
2/140x35	3000	6000	6000	6000	6000
140x45	3000	6000	6000	6000	6000
2/140x45	3000	6000	6000	6000	6000

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based on a maximum upper floor mass of 40 kg/m 2 , total wall mass of 15 kg/m 2 , floor live load of 1.5 kPa
- 3. Multiple studs to be nail laminated as per AS 1684
- 4. Wall stud notched to a maximum depth of 20 mm.
- 5. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering

Floor joists supporting floor loads only

Floor mass - 40 kg/m² **EXAMPLE:**

Domestic floor loads

Continuous span

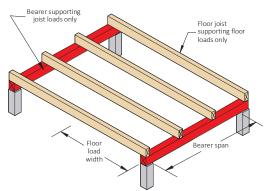
Joist spacing = 450 mm

Joist span = 2000 mm

Enter continuous span table at 450 mm in joist spacing column, read down to the lowest depth with a span equal to or greater than 2000 mm

ADOPT:

Red alert - 100x45


Loadings: permanent - self weight + $40 \text{ kg/m}^2 + 0.5 \text{ kPa}$ of the live load, live load - 1.5 kPa or floor point load of 1.8 kN

Joist spacing (mm)	300	450	600	300	450	600
Member size DxB (mm)			Maximum recomn	nended span (mm)		
Member Size DXB (mm)		Single span			Continuous span	
90x35	1600	1500	1400	2000	1800	1600
140x35	3400	2500	2300	4000	3000	2700
190x35	4400	3600	3200	5100	4400	3800
100x45	2200	1900	1700	2800	2200	2000

NOTES:

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. Spans are suitable for solid timber, particle board and ply flooring. floor sheeting glued and nailed to joists will improve floor rigidity. Where heavy overlay material is to be applied, such as a mortar bed tiled or slate floor, the permanent load allowance should be increased to 1.2 kPa. A reduction of joist spacing may be used to accommodate this extra permanent load. A satisfactory result can be achieved by adopting the maximum spans for 600 mm and 450 mm spacing but installing the joists at 450 and 300 mm spacing respectively
- 3. For beams which are continuous over two unequal spans, the design span and the 'resultant span description' depend upon the percentage span differences between the two spans as shown below
- 4. End bearing lengths = 42 mm at end supports and 58 mm at internal supports for continuous members
- 5. Not all sizes of Red Alert this table are stocked in each state. Please check with your supplier before ordering.

Floor bearers supporting floor loads only

Floor mass

EXAMPLE:

- 40 kg/m² Domestic floor loads

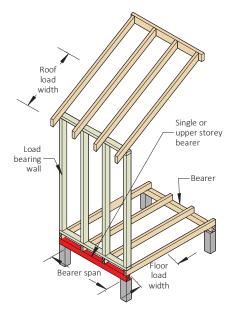
Single span

Bearer span = 1800 mm

Floor load width = 2400 mm

Enter single span table at 2400 mm floor load width column and read down to a span equal to or greater than 1800 mm

ADOPT:


Red Alext - 2/100x45

 $Loadings: permanent - self weight + 40 \ kg/m^2 + 0.5 \ kPa \ of the live load, live load - 1.5 \ kPa \ or floor point load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load in the live load of 1.8 \ kN \ and the live load in the live load of 1.8 \ kN \ and the live load in the live load in the live load in the live load in the live load of 1.8 \ kN \ and the live load in the liv$

Floor load width (mm)	1200	1800	2400	3000	3600	4200	4800	5400	6000	6600
Cina DuB (nama)				Maximu	m recommen	ded bearer sp	an (mm)			
Size DxB (mm)					Single	span				
100x45	1700	1500	1300	1200	1100	1100	1000	1000	NS	NS
2/100x45	2100	1800	1700	1500	1400	1400	1300	1200	1200	1100
100x75	2000	1700	1600	1400	1300	1300	1200	1200	1100	1100
				Continue	ous Span					
100x45	2100	1800	1700	1500	1400	1300	1200	1100	1000	1000
2/100x45	2700	2300	2100	1900	1800	1700	1700	1600	1500	1500
100x75	2500	2200	2000	1800	1700	1600	1500	1400	1400	1300

- 1. D = member depth, B = member breadth, NS = not suitable
- 2. The above table was based upon a maximum DL of 40 kg/m² + 0.5 kPa of LL, Floor live load of 1.5 kPa, floor point load of 1.8 kN
- 3. End bearing lengths = 42 mm at end supports and 58 mm at internal supports for continuous members. Subscript values indicate the minimum additional bearing length required to be greater at 42 mm end supports and 58 mm internal supports
- 4. Restraint values for slenderness calculation is 600 mm (floor joist at 600 mm centres Max)
- 5. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering

Floor bearers supporting single storey load bearing wall - sheet and tiled roof

Floor mass - 40 kg/m²

EXAMPLE:

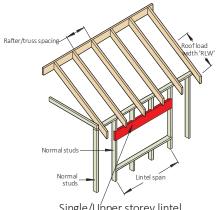
sheet roof - 40 kg/m²

roof load width = 1950 mm

bearer span = 1200 mm (single span)

floor load width = 1000 mm

Enter single span table at 2400 mm in floor load width column, 4500 roof load width column, read down to a span equal to or greater than 1200 mm in the 40 kg/m^2 row.


ADOPT:

Red alext -2/100x45

Floor load v	width (mm)		1200			2400			4800	
Roof load v	vidth (mm)	1500	4500	7500	1500	4500	7500	1500	4500	7500
Member size DxB (mm)	Roof mass (kg/m²)		Maximum rec	ommended sin	gle span floor b	earer supporti	ng single storey	load bearing v	wall span (mm)	
100x45	40	1200	1100	NS	1100	1000	NS	NS	NS	NS
100x45	90	1100	NS	NS	1000	NS	NS	NS	NS	NS
2/100:45	40	1600	1300	1200	1400	1200	1100	1200	1100	1000
2/100x45	90	1400	1200	1000	1300	1100	1000	1100	1000	NS
100.75	40	1500	1300	1100	1300	1200	1000	1100	1000	NS
100x75	90	1400	1100	1000	1200	1000	NS	1100	NS	NS
		Maximum re	commended co	ontinuous span	floor bearer su	pporting single	storey load be	aring wall span	(mm)	
100.45	40	1700	1400	1300	1500	1300	1200	1100	1000	1000
100x45	90	1500	1200	1100	1400	1200	1000	1100	1000	NS
2/10045	40	2100	1800	1600	1900	1700	1500	1600	1500	1400
2/100x45	90	2000	1600	1400	1800	1500	1300	1500	1400	1200
10075	40	2000	1700	1500	1800	1600	1400	1400	1400	1300
100x75	90	1800	1500	1300	1700	1400	1200	1400	1300	1100

- 1. D = member depth, B = member breadth, NS = not suitable.
- 2. The above table was based on total ground floor mass of 40 kg/m 2 + 0.5 kPa of LL, wall mass of 37 kg/m 2 , floor live load of 1.5 kPa, floor point load of 1.8 kN
- 3. The above table was based on a wall height of 2700 mm
- 4. End bearing lengths = 70 mm at end supports and 70 mm at internal supports for continuous members. Subscript values indicate the minimum additional bearing length where required to be greater than 70 mm at end supports and 70 mm at internal supports.
- 5. Restraint value for slenderness calculations is 600 mm
- 6. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering

Single span lintels in single/upper storey walls AS 4055 classification N1-N4

EXAMPLE:

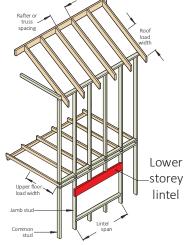
wind speed = N3 sheet roof - 40 kg/m^2

rafter/truss spacing = 600 mm

lintel span = 1300 mm

roof load width = 3900 mm

Enter span table at 4500 roof load width column, rafter/truss spacing 600 mm, and read down to a span equal to or greater than 1300 mm in the 40 kg/m 2 row


ADOPT:

Red alext - 140 x 35

Sing	le/Upper storey lint	el					^	-1	.40 X 33		
				Wind clas	sification N	N1-N4					
Roof load	d width (mm)	15	00	300	00	45	00	600	00	750	00
Rafter/trus	s spacing (mm)	600	1200	600	1200	600	1200	600	1200	600	1200
Size DxB (mm)	Roof mass (kg/m²)				Maximur	n recommen	ded lintel sp	an (mm)			
90x35	40	1600	1500	1300	1100	1100	NS	NS	NS	NS	NS
	90	1300	1100	1000	NS	NS	NS	NS	NS	NS	NS
140x35	40	2600	2700	2000	2000	1700	1700	1500	13005	140015	100010
	90	2000	2000	1600	1500	1400	1200	120010	NS	11005	NS
190x35	40	3400	3300	2800	2800	240010	2400 ₁₅	2100 ₁₅	210020	190015	170020
	90	2700	2800	2200	2100	1800	180010	170010	160030	1500 ₃₀	1300 ₂₅
2/90x35	40	2100	2100	1600	1500	1400	1200	1300	1100	1100	NS
	90	1600	1500	1300	1100	1100	NS	1000	NS	NS	NS
2/140x35	40	3200	3100	2600	2600	2200	2200	1900	1900	1800	1700
	90	2500	2600	2000	2000	1700	1700	1500	1400	1400	1300
2/190x35	40	4000	4000	3300	3300	3000	3000	2700	2700 ₅	2400	240010
	90	3300	3300	2700	2700	2300	2300	2100	2100	1900	19005
100x45	40	2000	2000	1500	1500	1300	1200	1200	NS	1100	NS
	90	1500	1400	1200	1000	1000	NS	NS	NS	NS	NS
2/100x45	40	2500	2600	2000	2000	1700	1600	1500	1400	1400	1200
	90	2000	2000	1500	1400	1300	1100	1200	1000	1100	NS
				Wind clas	sification (C1-C3					
90x35	40	1500	1000	1000	NS	NS	NS	NS	NS	NS	NS
	90	1300	1100	1000	NS	NS	NS	NS	NS	NS	NS
140x35	40	2300	2200	1600	1100	130010	NS	NS	NS	NS	NS
	90	2000	2000	1600 ₅	1200 ₅	130020	NS	NS	NS	NS	NS
190x35	40	3100	2900	220010	2000 ₁₅	170015	130015	150040	NS	110020	NS
	90	2700	2800 ₅	2200 ₁₅	210020	170020	140025	140050	NS	120055	NS
2/90x35	40	2100	2100	1600	1200	1300	NS	1100	NS	NS	NS
	90	1600	1500	1300	1100	1100	NS	1000	NS	NS	NS
2/140x35	40	3200	3100	2500	2400	2000	1800	1700	1300	1500 ₁₀	NS
	90	2500	2600	2000	2000	1700	17005	1500 ₅	13005	140015	NS
2/190x35	40	4000	4000	3300	3100	270010	260015	240020	2200 ₁₅	2000 ₂₅	170020
	90	3300	3300	2700	2700 ₅	230010	230020	210020	210020	190015	1800 ₃₀
100x45	40	1900	1600	1300	NS	1000	NS	NS	NS	NS	NS
	90	1500	1400	1200	NS	1000	NS	NS	NS	NS	NS
2/100x45	40	2500	2600	2000	1900	1600	1200	1400	NS	1300	NS
	90	2000	2000	1500	1400	1300	1100	1200	NS	1100	NS

- 1. D = member depth, B = member breadth, NS = not suitable.
- 2. Minimum bearing length = 35 mm at end supports. Subscript values indicate the minimum additional bearing length where required to be greater than 35 mm.
- 3. Restraint value for slenderness calculations is 600 mm.
- 4. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering

Single span lintels in lower storey walls AS 4055 classification up to C3

EXAMPLE:

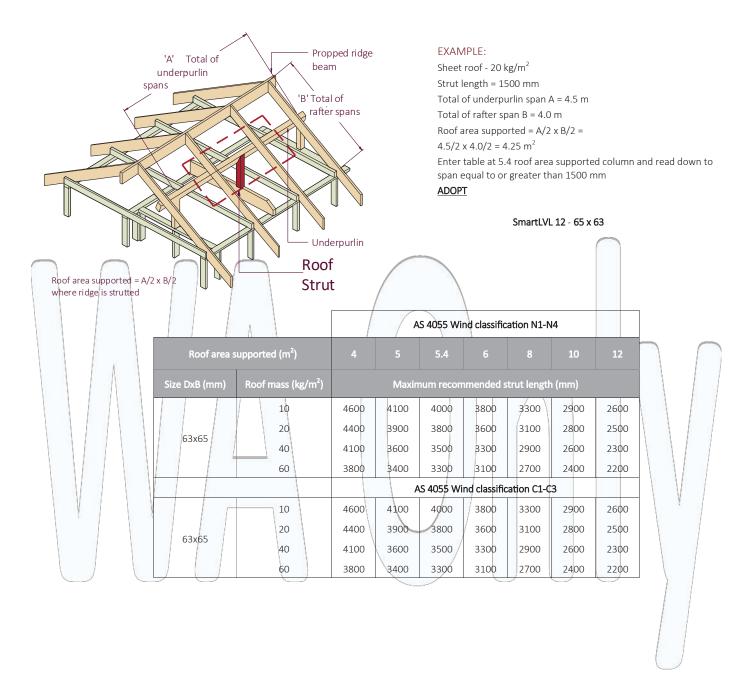
wind speed = N3 sheet roof - 40 kg/m² rafter/truss spacing = 600 mm lintel span = 1100 mm roof load width = 2900 mm floor load width = 1200 mm

Enter span table at 3000 roof load width column, floor load width 1200 mm, and read down to a span equal to or greater than 1100 mm in the $40~\text{kg/m}^2$ row


ADOPT:

Red Alext 140 x 35

Roof load w	idth (mm)		1500			3000			4500			6000	
Upper floor loa	d width (mm)	1200	2400	3600	1200	2400	3600	1200	2400	3600	1200	2400	3600
Size DxB (mm)	Roof mass (kg/m²)				Ma	aximum red	commende	ed lintel spa	ın (mm)				
90x35	40	1000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	90	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
140x35	40	1500	1400	1300	1500	1300	1200	1400	1300	1200	1300	1200	1200
	90	1400	1300	1200	1300	1200	1100	1200	1100	11005	1100	11005	100010
190x35	40	2100	1900	170010	2000	1800	170010	1900	18005	160010	1800	17005	160010
	90	2000	1800	170010	1800	17005	160010	170010	160015	150015	160015	1500 ₁₅	140020
2/90x35	40	1200	1100	1000	1200	1100	1000	1100	1000	NS	1100	1000	NS
	90	1200	1100	1000	1000	1000	NS	1000	NS	NS	NS	NS	NS
2/140x35	40	2000	1800	1600	1800	1700	1600	1800	1600	1500	1700	1600	1500
	90	1800	1700	1600	1700	1500	1500	1500	1400	1400	1400	1400	1300
2/190x35	40	2700	2400	2200	2500	2300	2100	2400	2200	2100	2300	2100	2000
	90	2500	2300	2100	2300	2100	2000	2100	2000	1900	2000	1900	1800
100x45	40	1200	1100	1000	1100	1000	NS	1100	1000	NS	1000	NS	NS
	90	1100	1000	NS	1000	NS	NS	NS	NS	NS	NS	NS	NS
100x75	40	1400	1300	1200	1300	1200	1100	1300	1200	1100	1200	1100	1100
	90	1300	1200	1100	1200	1100	1000	1100	1000	1000	1000	1000	NS


- 1. D = member depth, B = member breadth, NS = not suitable.
- 2. Minimum bearing length = 35 mm at end supports. Subscript values indicate the minimum additional bearing length where required to be greater than 35 mm
- 3. Restraint value for slenderness calculations is 600 mm.
- 4. Not all sizes of SmartLVL in this table are stocked in each state. Please check with your supplier before ordering.

SmartLVL 12 Underpurlins – sheet and tiled roof AS 4055 wind classification N1 - N4 and C1-C3

- 1. D = member depth, B = member breadth, NS = not suitable.
- 2. Minimum bearing length = 45 mm at end and internal supports

SmartLVL 12 Roof struts – sheet and tiled roof AS 4055 wind classification N1 - N4 and C1-C3

- 1. Tables assume strut is vertical. Struts lengths will reduce with increased angle from the vertical
- 2. D = member depth, B = member breadth, NS = not suitable.
- 3. Minimum bearing length = 70 mm at end supports The strutting tables in AS 1684 are based upon the load associated with an underpurlin span of 1.8 m and a roof load width of 3.0 m. To compare to AS 1684.2 Table 7.6, use a roof area of 5.4 m² in the above table
- 4. Fixing of SmartLVL roof struts as per detail on page 8

Notes:

								-		 			

Sales 1800 33 77 03 Technical support 1300 668 690

